Please use this identifier to cite or link to this item: https://doi.org/10.1016/j.drup.2005.08.003
DC FieldValue
dc.titleInsights into oxazaphosphorine resistance and possible approaches to its circumvention
dc.contributor.authorZhang, J.
dc.contributor.authorTian, Q.
dc.contributor.authorChan, S.Y.
dc.contributor.authorDuan, W.
dc.contributor.authorZhou, S.
dc.date.accessioned2014-10-29T02:03:19Z
dc.date.available2014-10-29T02:03:19Z
dc.date.issued2005-10
dc.identifier.citationZhang, J., Tian, Q., Chan, S.Y., Duan, W., Zhou, S. (2005-10). Insights into oxazaphosphorine resistance and possible approaches to its circumvention. Drug Resistance Updates 8 (5) : 271-297. ScholarBank@NUS Repository. https://doi.org/10.1016/j.drup.2005.08.003
dc.identifier.issn13687646
dc.identifier.urihttp://scholarbank.nus.edu.sg/handle/10635/106665
dc.description.abstractThe oxazaphosphorines cyclophosphamide, ifosfamide and trofosfamide remain a clinically useful class of anticancer drugs with substantial antitumour activity against a variety of solid tumors and hematological malignancies. A major limitation to their use is tumour resistance, which is due to multiple mechanisms that include increased DNA repair, increased cellular thiol levels, glutathione S-transferase and aldehyde dehydrogenase activities, and altered cell-death response to DNA damage. These mechanisms have been recently re-examined with the aid of sensitive analytical techniques, high-throughput proteomic and genomic approaches, and powerful pharmacogenetic tools. Oxazaphosphorine resistance, together with dose-limiting toxicity (mainly neutropenia and neurotoxicity), significantly hinders chemotherapy in patients, and hence, there is compelling need to find ways to overcome it. Four major approaches are currently being explored in preclinical models, some also in patients: combination with agents that modulate cellular response and disposition of oxazaphosphorines; antisense oligonucleotides directed against specific target genes; introduction of an activating gene (CYP3A4) into tumor tissue; and modification of dosing regimens. Of these approaches, antisense oligonucleotides and gene therapy are perhaps more speculative, requiring detailed safety and efficacy studies in preclinical models and in patients. A fifth approach is the design of novel oxazaphosphorines that have favourable pharmacokinetic and pharmacodynamic properties and are less vulnerable to resistance. Oxazaphosphorines not requiring hepatic CYP-mediated activation (for example, NSC 613060 and mafosfamide) or having additional targets (for example, glufosfamide that also targets glucose transport) have been synthesized and are being evaluated for safety and efficacy. Characterization of the molecular targets associated with oxazaphosphorine resistance may lead to a deeper understanding of the factors critical to the optimal use of these agents in chemotherapy and may allow the development of strategies to overcome resistance. © 2005 Elsevier Ltd. All rights reserved.
dc.description.urihttp://libproxy1.nus.edu.sg/login?url=http://dx.doi.org/10.1016/j.drup.2005.08.003
dc.sourceScopus
dc.subject2-Chloroethyl-3-sarcosinamide-1- nitrosourea
dc.subjectAldehyde dehydrogenase
dc.subjectCyclophosphamide
dc.subjectCYP3A4
dc.subjectDNA repair
dc.subjectGlufosfamide
dc.subjectGlutathione S-transferase
dc.subjectIfosfamide
dc.subjectMafosfamide
dc.subjectMelphalan
dc.subjectNSC 612567
dc.subjectNSC 613060
dc.subjectOxazaphosphorine
dc.subjectTrofosfamide
dc.typeReview
dc.contributor.departmentPHARMACY
dc.description.doi10.1016/j.drup.2005.08.003
dc.description.sourcetitleDrug Resistance Updates
dc.description.volume8
dc.description.issue5
dc.description.page271-297
dc.description.codenDRUPF
dc.identifier.isiut000234215900001
Appears in Collections:Staff Publications

Show simple item record
Files in This Item:
There are no files associated with this item.

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.