Please use this identifier to cite or link to this item: https://doi.org/10.1016/j.jmgm.2011.09.002
DC FieldValue
dc.titleCombinatorial support vector machines approach for virtual screening of selective multi-target serotonin reuptake inhibitors from large compound libraries
dc.contributor.authorShi, Z.
dc.contributor.authorMa, X.H.
dc.contributor.authorQin, C.
dc.contributor.authorJia, J.
dc.contributor.authorJiang, Y.Y.
dc.contributor.authorTan, C.Y.
dc.contributor.authorChen, Y.Z.
dc.date.accessioned2014-10-29T01:50:05Z
dc.date.available2014-10-29T01:50:05Z
dc.date.issued2012-02
dc.identifier.citationShi, Z., Ma, X.H., Qin, C., Jia, J., Jiang, Y.Y., Tan, C.Y., Chen, Y.Z. (2012-02). Combinatorial support vector machines approach for virtual screening of selective multi-target serotonin reuptake inhibitors from large compound libraries. Journal of Molecular Graphics and Modelling 32 : 49-66. ScholarBank@NUS Repository. https://doi.org/10.1016/j.jmgm.2011.09.002
dc.identifier.issn10933263
dc.identifier.urihttp://scholarbank.nus.edu.sg/handle/10635/105746
dc.description.abstractSelective multi-target serotonin reuptake inhibitors enhance antidepressant efficacy. Their discovery can be facilitated by multiple methods, including in silico ones. In this study, we developed and tested an in silico method, combinatorial support vector machines (COMBI-SVMs), for virtual screening (VS) multi-target serotonin reuptake inhibitors of seven target pairs (serotonin transporter paired with noradrenaline transporter, H 3 receptor, 5-HT 1A receptor, 5-HT 1B receptor, 5-HT 2C receptor, melanocortin 4 receptor and neurokinin 1 receptor respectively) from large compound libraries. COMBI-SVMs trained with 917-1951 individual target inhibitors correctly identified 22-83.3% (majority >31.1%) of the 6-216 dual inhibitors collected from literature as independent testing sets. COMBI-SVMs showed moderate to good target selectivity in misclassifying as dual inhibitors 2.2-29.8% (majority
dc.description.urihttp://libproxy1.nus.edu.sg/login?url=http://dx.doi.org/10.1016/j.jmgm.2011.09.002
dc.sourceScopus
dc.subjectAntidepressants
dc.subjectComputer aided drug design
dc.subjectHigh-throughput screening
dc.subjectMulti-target
dc.subjectSupport vector machines
dc.subjectVirtual screening
dc.typeArticle
dc.contributor.departmentPHARMACY
dc.description.doi10.1016/j.jmgm.2011.09.002
dc.description.sourcetitleJournal of Molecular Graphics and Modelling
dc.description.volume32
dc.description.page49-66
dc.description.codenJMGMF
dc.identifier.isiut000299197100006
Appears in Collections:Staff Publications

Show simple item record
Files in This Item:
There are no files associated with this item.

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.