Please use this identifier to cite or link to this item:
https://doi.org/10.1016/S0378-3758(01)00289-0
DC Field | Value | |
---|---|---|
dc.title | A geometric method for singular c-optimal designs | |
dc.contributor.author | Fan, S.K. | |
dc.contributor.author | Chaloner, K. | |
dc.date.accessioned | 2014-10-28T05:16:54Z | |
dc.date.available | 2014-10-28T05:16:54Z | |
dc.date.issued | 2003-04-01 | |
dc.identifier.citation | Fan, S.K.,Chaloner, K. (2003-04-01). A geometric method for singular c-optimal designs. Journal of Statistical Planning and Inference 113 (1) : 249-257. ScholarBank@NUS Repository. <a href="https://doi.org/10.1016/S0378-3758(01)00289-0" target="_blank">https://doi.org/10.1016/S0378-3758(01)00289-0</a> | |
dc.identifier.issn | 03783758 | |
dc.identifier.uri | http://scholarbank.nus.edu.sg/handle/10635/105491 | |
dc.description.abstract | If a candidate c-optimal design gives a singular information matrix, an equivalence theorem from Silvey (1978) can be used to verify optimality. The theorem is difficult to use however, as it requires a generalized inverse of the information matrix but not all generalized inverses can be used. Silvey identified finding such an inverse as an open problem. A characterization of all generalized inverses that can be used is presented here, building on Elfving's (1952) geometric method for finding c-optimal designs and using the Elfving set. © 2002 Elsevier Science B.V. All rights reserved. | |
dc.description.uri | http://libproxy1.nus.edu.sg/login?url=http://dx.doi.org/10.1016/S0378-3758(01)00289-0 | |
dc.source | Scopus | |
dc.subject | Elfving's theorem | |
dc.subject | Equivalence theorem | |
dc.type | Review | |
dc.contributor.department | STATISTICS & APPLIED PROBABILITY | |
dc.description.doi | 10.1016/S0378-3758(01)00289-0 | |
dc.description.sourcetitle | Journal of Statistical Planning and Inference | |
dc.description.volume | 113 | |
dc.description.issue | 1 | |
dc.description.page | 249-257 | |
dc.description.coden | JSPID | |
dc.identifier.isiut | NOT_IN_WOS | |
Appears in Collections: | Staff Publications |
Show simple item record
Files in This Item:
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.