Please use this identifier to cite or link to this item: https://doi.org/10.1016/S0378-3758(01)00289-0
DC FieldValue
dc.titleA geometric method for singular c-optimal designs
dc.contributor.authorFan, S.K.
dc.contributor.authorChaloner, K.
dc.date.accessioned2014-10-28T05:16:54Z
dc.date.available2014-10-28T05:16:54Z
dc.date.issued2003-04-01
dc.identifier.citationFan, S.K.,Chaloner, K. (2003-04-01). A geometric method for singular c-optimal designs. Journal of Statistical Planning and Inference 113 (1) : 249-257. ScholarBank@NUS Repository. <a href="https://doi.org/10.1016/S0378-3758(01)00289-0" target="_blank">https://doi.org/10.1016/S0378-3758(01)00289-0</a>
dc.identifier.issn03783758
dc.identifier.urihttp://scholarbank.nus.edu.sg/handle/10635/105491
dc.description.abstractIf a candidate c-optimal design gives a singular information matrix, an equivalence theorem from Silvey (1978) can be used to verify optimality. The theorem is difficult to use however, as it requires a generalized inverse of the information matrix but not all generalized inverses can be used. Silvey identified finding such an inverse as an open problem. A characterization of all generalized inverses that can be used is presented here, building on Elfving's (1952) geometric method for finding c-optimal designs and using the Elfving set. © 2002 Elsevier Science B.V. All rights reserved.
dc.description.urihttp://libproxy1.nus.edu.sg/login?url=http://dx.doi.org/10.1016/S0378-3758(01)00289-0
dc.sourceScopus
dc.subjectElfving's theorem
dc.subjectEquivalence theorem
dc.typeReview
dc.contributor.departmentSTATISTICS & APPLIED PROBABILITY
dc.description.doi10.1016/S0378-3758(01)00289-0
dc.description.sourcetitleJournal of Statistical Planning and Inference
dc.description.volume113
dc.description.issue1
dc.description.page249-257
dc.description.codenJSPID
dc.identifier.isiutNOT_IN_WOS
Appears in Collections:Staff Publications

Show simple item record
Files in This Item:
There are no files associated with this item.

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.