Please use this identifier to cite or link to this item: https://doi.org/10.1198/jasa.2009.0138
DC FieldValue
dc.titleShrinkage estimation of the varying coefficient model
dc.contributor.authorWang, H.
dc.contributor.authorXia, Y.
dc.date.accessioned2014-10-28T05:15:10Z
dc.date.available2014-10-28T05:15:10Z
dc.date.issued2009-06
dc.identifier.citationWang, H., Xia, Y. (2009-06). Shrinkage estimation of the varying coefficient model. Journal of the American Statistical Association 104 (486) : 747-757. ScholarBank@NUS Repository. https://doi.org/10.1198/jasa.2009.0138
dc.identifier.issn01621459
dc.identifier.urihttp://scholarbank.nus.edu.sg/handle/10635/105362
dc.description.abstractThe varying coefficient model is a useful extension of the linear regression model. Nevertheless, how to conduct variable selection for the varying coefficient model in a computationally efficient manner is poorly understood. To solve the problem, we propose here a novel method, which combines the ideas of the local polynomial smoothing and the Least Absolute Shrinkage and Selection Operator (LASSO). The new method can do nonparametric estimation and variable selection simultaneously. With a local constant estimator and the adaptive LASSO penalty, the new method can identify the true model consistently, and that the resulting estimator can be as efficient as the oracle estimator. Numerical studies clearly confirm our theories. Extension to other shrinkage methods (e.g., the SCAD, i.e., the Smoothly Clipped Absolute Deviation.) and other smoothing methods is straightforward. © 2009 American Statistical Association.
dc.description.urihttp://libproxy1.nus.edu.sg/login?url=http://dx.doi.org/10.1198/jasa.2009.0138
dc.sourceScopus
dc.subjectBayesian information criterion
dc.subjectKernel smoothing
dc.subjectLeast Absolute Shrinkage and Selection Operator
dc.subjectOracle property
dc.subjectSmoothly Clipped Absolute Deviation
dc.subjectVariable selection
dc.subjectVarying coefficient model
dc.typeArticle
dc.contributor.departmentSTATISTICS & APPLIED PROBABILITY
dc.description.doi10.1198/jasa.2009.0138
dc.description.sourcetitleJournal of the American Statistical Association
dc.description.volume104
dc.description.issue486
dc.description.page747-757
dc.identifier.isiut000266461400029
Appears in Collections:Staff Publications

Show simple item record
Files in This Item:
There are no files associated with this item.

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.