Please use this identifier to cite or link to this item: https://doi.org/10.1111/j.1751-5823.2011.00150.x
DC FieldValue
dc.titleProperties of Census Dual System Population Size Estimators
dc.contributor.authorXi Chen, S.
dc.contributor.authorTang, C.Y.
dc.date.accessioned2014-10-28T05:14:32Z
dc.date.available2014-10-28T05:14:32Z
dc.date.issued2011-12
dc.identifier.citationXi Chen, S., Tang, C.Y. (2011-12). Properties of Census Dual System Population Size Estimators. International Statistical Review 79 (3) : 336-361. ScholarBank@NUS Repository. https://doi.org/10.1111/j.1751-5823.2011.00150.x
dc.identifier.issn03067734
dc.identifier.urihttp://scholarbank.nus.edu.sg/handle/10635/105315
dc.description.abstractWe study parametric and non-parametric approaches for assessing the accuracy and coverage of a population census based on dual system surveys. The two parametric approaches being considered are post-stratification and logistic regression, which have been or will be implemented for the US Census dual system surveys. We show that the parametric model-based approaches are generally biased unless the model is correctly specified. We then study a local post-stratification approach based on a non-parametric kernel estimate of the Census enumeration functions. We illustrate that the non-parametric approach avoids the risk of model mis-specification and is consistent under relatively weak conditions. The performances of these estimators are evaluated numerically via simulation studies and an empirical analysis based on the 2000 US Census post-enumeration survey data. © 2011 The Authors. International Statistical Review © 2011 International Statistical Institute.
dc.description.urihttp://libproxy1.nus.edu.sg/login?url=http://dx.doi.org/10.1111/j.1751-5823.2011.00150.x
dc.sourceScopus
dc.subjectCapture-recapture
dc.subjectDiscrete covariate
dc.subjectErroneous enumeration
dc.subjectKernel smoothing
dc.subjectModel bias
dc.subjectPopulation size estimation
dc.typeArticle
dc.contributor.departmentSTATISTICS & APPLIED PROBABILITY
dc.description.doi10.1111/j.1751-5823.2011.00150.x
dc.description.sourcetitleInternational Statistical Review
dc.description.volume79
dc.description.issue3
dc.description.page336-361
dc.identifier.isiut000297508700005
Appears in Collections:Staff Publications

Show simple item record
Files in This Item:
There are no files associated with this item.

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.