Please use this identifier to cite or link to this item: https://doi.org/10.1023/A:1009676116509
DC FieldValue
dc.titlePredicting a Future Lifetime through Box-Cox Transformation
dc.contributor.authorYang, Z.
dc.date.accessioned2014-10-28T05:14:19Z
dc.date.available2014-10-28T05:14:19Z
dc.date.issued1999
dc.identifier.citationYang, Z. (1999). Predicting a Future Lifetime through Box-Cox Transformation. Lifetime Data Analysis 5 (3) : 265-279. ScholarBank@NUS Repository. https://doi.org/10.1023/A:1009676116509
dc.identifier.issn13807870
dc.identifier.urihttp://scholarbank.nus.edu.sg/handle/10635/105303
dc.description.abstractIn predicting a future lifetime based on a sample of past lifetimes, the Box-Cox transformation method provides a simple and unified procedure that is shown in this article to meet or often outperform the corresponding frequentist solution in terms of coverage probability and average length of prediction intervals. Kullback-Leibler information and second-order asymptotic expansion are used to justify the Box-Cox procedure. Extensive Monte Carlo simulations are also performed to evaluate the small sample behavior of the procedure. Certain popular lifetime distributions, such as Weibull, inverse Gaussian and Birnbaum-Saunders are served as illustrative examples. One important advantage of the Box-Cox procedure lies in its easy extension to linear model predictions where the exact frequentist solutions are often not available.
dc.description.urihttp://libproxy1.nus.edu.sg/login?url=http://dx.doi.org/10.1023/A:1009676116509
dc.sourceScopus
dc.subjectBox-Cox transformation
dc.subjectCoverage probability
dc.subjectKullback-Leibler information
dc.subjectLifetime distributions
dc.subjectPrediction interval
dc.typeArticle
dc.contributor.departmentSTATISTICS & APPLIED PROBABILITY
dc.description.doi10.1023/A:1009676116509
dc.description.sourcetitleLifetime Data Analysis
dc.description.volume5
dc.description.issue3
dc.description.page265-279
dc.identifier.isiut000081568200004
Appears in Collections:Staff Publications

Show simple item record
Files in This Item:
There are no files associated with this item.

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.