Please use this identifier to cite or link to this item: https://doi.org/10.3150/bj/1093265633
DC FieldValue
dc.titleOn the global geometry of parametric models and information recovery
dc.contributor.authorMarriott, P.
dc.contributor.authorVos, P.
dc.date.accessioned2014-10-28T05:13:59Z
dc.date.available2014-10-28T05:13:59Z
dc.date.issued2004-08
dc.identifier.citationMarriott, P., Vos, P. (2004-08). On the global geometry of parametric models and information recovery. Bernoulli 10 (4) : 639-649. ScholarBank@NUS Repository. https://doi.org/10.3150/bj/1093265633
dc.identifier.issn13507265
dc.identifier.urihttp://scholarbank.nus.edu.sg/handle/10635/105274
dc.description.abstractWe examine the question of which statistic or statistics should be used in order to recover information important for inference. We take a global geometric viewpoint, developing the local geometry of Amari. By examining the behaviour of simple geometric models, we show how not only the local curvature properties of parametric families but also the global geometric structure can be of crucial importance in finite-sample analysis. The tool we use to explore this global geometry is the Karhunen-Loève decomposition. Using global geometry, we show that the maximum likelihood estimate is the most important one-dimensional summary of information, but that traditional methods of information recovery beyond the maximum likelihood estimate can perform poorly. We also use the global geometry to construct better information summaries to be used with the maximum likelihood estimate. © 2004 ISI/BS.
dc.sourceScopus
dc.subjectAncillarity
dc.subjectAsymptotic analysis
dc.subjectGeometry
dc.subjectGlobal geometry
dc.subjectInformation recovery
dc.subjectKarhunen-loève decomposition
dc.subjectLikelihood
dc.typeArticle
dc.contributor.departmentSTATISTICS & APPLIED PROBABILITY
dc.description.doi10.3150/bj/1093265633
dc.description.sourcetitleBernoulli
dc.description.volume10
dc.description.issue4
dc.description.page639-649
dc.identifier.isiut000224916200004
Appears in Collections:Staff Publications

Show simple item record
Files in This Item:
There are no files associated with this item.

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.