Please use this identifier to cite or link to this item: https://scholarbank.nus.edu.sg/handle/10635/105258
DC FieldValue
dc.titleOn multivariate median regression
dc.contributor.authorChakraborty, B.
dc.date.accessioned2014-10-28T05:13:40Z
dc.date.available2014-10-28T05:13:40Z
dc.date.issued1999
dc.identifier.citationChakraborty, B. (1999). On multivariate median regression. Bernoulli 5 (4) : 683-703. ScholarBank@NUS Repository.
dc.identifier.issn13507265
dc.identifier.urihttp://scholarbank.nus.edu.sg/handle/10635/105258
dc.description.abstractAn extension of the concept of least absolute deviation regression for problems with multivariate response is considered. The approach is based on a transformation and retransformation technique that chooses a data-driven coordinate system for transforming the response vectors and then retransforms the estimate of the matrix of regression parameters, which is obtained by performing coordinatewise least absolute deviations regression on the transformed response vectors. It is shown that the estimates are equivariant under non-singular linear transformations of the response vectors. An algorithm called TREMMER (Transformation Retransformation Estimates in Multivariate MEdian Regression) has been suggested, which adaptivcly chooses the optimal data-driven coordinate system and then computes the regression estimates. We have also indicated how resampling techniques like the bootstrap can be used to conveniently estimate the standard errors of TREMMER estimates. It is shown that the proposed estimate is more efficient than the non-equivariant coordinatewise least absolute deviations estimate, and it outperforms ordinary least-squares estimates in the case of heavy-tailed non-normal multivariate error distributions. Asymptotic normality and some other optimality properties of the estimate are also discussed. Some interesting examples are presented to motivate the need for affine equivariant estimation in multivariate. median regression and to demonstrate the performance of the proposed methodology. © 1999 ISI/BS .
dc.sourceScopus
dc.subjectAffine equivariance
dc.subjectBootstrap
dc.subjectEfficiency
dc.subjectElliptically symmetric distributions
dc.subjectGeneralized variance
dc.subjectLeast absolute deviations
dc.subjectMultiresponse linear model
dc.subjectStandard error estimation
dc.subjectTransformation-retransformation estimate
dc.typeArticle
dc.contributor.departmentSTATISTICS & APPLIED PROBABILITY
dc.description.sourcetitleBernoulli
dc.description.volume5
dc.description.issue4
dc.description.page683-703
dc.identifier.isiutNOT_IN_WOS
Appears in Collections:Staff Publications

Show simple item record
Files in This Item:
There are no files associated with this item.

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.