Please use this identifier to cite or link to this item: https://doi.org/10.1016/j.spl.2009.10.015
DC FieldValue
dc.titleLeast squares approximation with a diverging number of parameters
dc.contributor.authorLeng, C.
dc.contributor.authorLi, B.
dc.date.accessioned2014-10-28T05:12:49Z
dc.date.available2014-10-28T05:12:49Z
dc.date.issued2010
dc.identifier.citationLeng, C., Li, B. (2010). Least squares approximation with a diverging number of parameters. Statistics and Probability Letters 80 (3-4) : 254-261. ScholarBank@NUS Repository. https://doi.org/10.1016/j.spl.2009.10.015
dc.identifier.issn01677152
dc.identifier.urihttp://scholarbank.nus.edu.sg/handle/10635/105192
dc.description.abstractRegularized regression with the ℓ1 penalty is a popular approach for variable selection and coefficient estimation. For a unified treatment of the ℓ1-constrained model selection, Wang and Leng (2007) proposed the least squares approximation method (LSA) for a fixed dimension. LSA makes use of a quadratic expansion of the loss function and takes full advantage of the fast Lasso algorithm in Efron et al. (2004). In this paper, we extend the fixed dimension LSA to the situation with a diverging number of parameters. We show that LSA possesses the oracle properties under appropriate conditions when the number of variables grows with the sample size. We propose a new tuning parameter selection method which achieves the oracle properties. Extensive simulation studies confirmed the theoretical results. © 2009 Elsevier B.V. All rights reserved.
dc.description.urihttp://libproxy1.nus.edu.sg/login?url=http://dx.doi.org/10.1016/j.spl.2009.10.015
dc.sourceScopus
dc.typeArticle
dc.contributor.departmentSTATISTICS & APPLIED PROBABILITY
dc.description.doi10.1016/j.spl.2009.10.015
dc.description.sourcetitleStatistics and Probability Letters
dc.description.volume80
dc.description.issue3-4
dc.description.page254-261
dc.description.codenSPLTD
dc.identifier.isiut000274277700016
Appears in Collections:Staff Publications

Show simple item record
Files in This Item:
There are no files associated with this item.

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.