Please use this identifier to cite or link to this item:
https://doi.org/10.1002/qre.543
DC Field | Value | |
---|---|---|
dc.title | Interval charting schemes for joint monitoring of process mean and variance | |
dc.contributor.author | Gan, F.F. | |
dc.contributor.author | Ting, K.W. | |
dc.contributor.author | Chang, T.C. | |
dc.date.accessioned | 2014-10-28T05:12:45Z | |
dc.date.available | 2014-10-28T05:12:45Z | |
dc.date.issued | 2004-06 | |
dc.identifier.citation | Gan, F.F., Ting, K.W., Chang, T.C. (2004-06). Interval charting schemes for joint monitoring of process mean and variance. Quality and Reliability Engineering International 20 (4) : 291-303. ScholarBank@NUS Repository. https://doi.org/10.1002/qre.543 | |
dc.identifier.issn | 07488017 | |
dc.identifier.uri | http://scholarbank.nus.edu.sg/handle/10635/105185 | |
dc.description.abstract | Shewhart mean and variance schemes continue to enjoy great popularity among process engineers because they are easy to understand and are the most sensitive in detecting large process shifts. For some processes, for example the screen printing process in memory modules assembly, there is a possibility of the process mean and variance shifting at the same time due to special causes. Thus, instead of studying the joint behavior by looking at the mean and variance information on two separate charts, it is practical and usually more meaningful to look at the combined mean and variance information on an interval charting scheme. The interval scheme is found to have a similar run length performance to the Shewhart mean and variance schemes and only a single chart needs to be managed. A simple design procedure for the interval scheme that matches the corresponding Shewhart scheme is provided for easy implementation. Also, the interval and Shewhart schemes are compared based on real manufacturing data sets. Copyright © 2004 John Wiley & Sons, Ltd. | |
dc.description.uri | http://libproxy1.nus.edu.sg/login?url=http://dx.doi.org/10.1002/qre.543 | |
dc.source | Scopus | |
dc.subject | Average run length | |
dc.subject | Geometrical representation | |
dc.subject | Joint monitoring | |
dc.subject | Shewhart chart | |
dc.subject | Statistical process control | |
dc.type | Article | |
dc.contributor.department | STATISTICS & APPLIED PROBABILITY | |
dc.description.doi | 10.1002/qre.543 | |
dc.description.sourcetitle | Quality and Reliability Engineering International | |
dc.description.volume | 20 | |
dc.description.issue | 4 | |
dc.description.page | 291-303 | |
dc.description.coden | QREIE | |
dc.identifier.isiut | 000222048700006 | |
Appears in Collections: | Staff Publications |
Show simple item record
Files in This Item:
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.