Please use this identifier to cite or link to this item: https://doi.org/10.1214/009053605000000516
DC FieldValue
dc.titleFixed-domain asymptotics for a subclass of matérn-type gaussian random fields
dc.contributor.authorLoh, W.-L.
dc.date.accessioned2014-10-28T05:12:14Z
dc.date.available2014-10-28T05:12:14Z
dc.date.issued2005-10
dc.identifier.citationLoh, W.-L. (2005-10). Fixed-domain asymptotics for a subclass of matérn-type gaussian random fields. Annals of Statistics 33 (5) : 2344-2394. ScholarBank@NUS Repository. https://doi.org/10.1214/009053605000000516
dc.identifier.issn00905364
dc.identifier.urihttp://scholarbank.nus.edu.sg/handle/10635/105151
dc.description.abstractStein [Statist. Sci. 4 (1989) 432-433] proposed the Matérn-type Gaussian random fields as a very flexible class of models for computer experiments. This article considers a subclass of these models that are exactly once mean square differentiable. In particular, the likelihood function is determined in closed form, and under mild conditions the sieve maximum likelihood estimators for the parameters of the covariance function are shown to be weakly consistent with respect to fixed-domain asymptotics. © Institute of Mathematical Statistics, 2005.
dc.description.urihttp://libproxy1.nus.edu.sg/login?url=http://dx.doi.org/10.1214/009053605000000516
dc.sourceScopus
dc.subjectComputer experiment
dc.subjectConsistency
dc.subjectFixed-domain asymptotics
dc.subjectGaussian random field
dc.subjectMatérn-type covariance function
dc.subjectSieve maximum likelihood estimation
dc.typeArticle
dc.contributor.departmentSTATISTICS & APPLIED PROBABILITY
dc.description.doi10.1214/009053605000000516
dc.description.sourcetitleAnnals of Statistics
dc.description.volume33
dc.description.issue5
dc.description.page2344-2394
dc.identifier.isiut000234092100013
Appears in Collections:Staff Publications

Show simple item record
Files in This Item:
There are no files associated with this item.

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.