Please use this identifier to cite or link to this item: https://doi.org/10.1198/jasa.2009.tm09372
DC FieldValue
dc.titleDimension reduction and semiparametric estimation of survival models
dc.contributor.authorXia, Y.
dc.contributor.authorZhang, D.
dc.contributor.authorXu, J.
dc.date.accessioned2014-10-28T05:11:19Z
dc.date.available2014-10-28T05:11:19Z
dc.date.issued2010-03
dc.identifier.citationXia, Y., Zhang, D., Xu, J. (2010-03). Dimension reduction and semiparametric estimation of survival models. Journal of the American Statistical Association 105 (489) : 278-290. ScholarBank@NUS Repository. https://doi.org/10.1198/jasa.2009.tm09372
dc.identifier.issn01621459
dc.identifier.urihttp://scholarbank.nus.edu.sg/handle/10635/105093
dc.description.abstractIn this paper, we propose a new dimension reduction method by introducing a nominal regression model with the hazard function as the conditional mean, which naturally retrieves information from complete data and censored data as well. Moreover, without requiring the linearity condition, the new method can estimate the entire central subspace consistently and exhaustively. The method also provides an alternative approach for the analysis of censored data assuming neither the link function nor the distribution. Hence, it exhibits superior robustness properties. Numerical studies show that the method can indeed be readily used to efficiently estimate survival models, explore the data structures and identify important variables. © 2010 American Statistical Association.
dc.description.urihttp://libproxy1.nus.edu.sg/login?url=http://dx.doi.org/10.1198/jasa.2009.tm09372
dc.sourceScopus
dc.subjectCensored data
dc.subjectHazard function
dc.subjectLinear transformation model
dc.subjectNonparametric regression
dc.typeArticle
dc.contributor.departmentSTATISTICS & APPLIED PROBABILITY
dc.description.doi10.1198/jasa.2009.tm09372
dc.description.sourcetitleJournal of the American Statistical Association
dc.description.volume105
dc.description.issue489
dc.description.page278-290
dc.identifier.isiut000276786500026
Appears in Collections:Staff Publications

Show simple item record
Files in This Item:
There are no files associated with this item.

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.