Please use this identifier to cite or link to this item:
https://doi.org/10.1198/jasa.2009.tm09372
DC Field | Value | |
---|---|---|
dc.title | Dimension reduction and semiparametric estimation of survival models | |
dc.contributor.author | Xia, Y. | |
dc.contributor.author | Zhang, D. | |
dc.contributor.author | Xu, J. | |
dc.date.accessioned | 2014-10-28T05:11:19Z | |
dc.date.available | 2014-10-28T05:11:19Z | |
dc.date.issued | 2010-03 | |
dc.identifier.citation | Xia, Y., Zhang, D., Xu, J. (2010-03). Dimension reduction and semiparametric estimation of survival models. Journal of the American Statistical Association 105 (489) : 278-290. ScholarBank@NUS Repository. https://doi.org/10.1198/jasa.2009.tm09372 | |
dc.identifier.issn | 01621459 | |
dc.identifier.uri | http://scholarbank.nus.edu.sg/handle/10635/105093 | |
dc.description.abstract | In this paper, we propose a new dimension reduction method by introducing a nominal regression model with the hazard function as the conditional mean, which naturally retrieves information from complete data and censored data as well. Moreover, without requiring the linearity condition, the new method can estimate the entire central subspace consistently and exhaustively. The method also provides an alternative approach for the analysis of censored data assuming neither the link function nor the distribution. Hence, it exhibits superior robustness properties. Numerical studies show that the method can indeed be readily used to efficiently estimate survival models, explore the data structures and identify important variables. © 2010 American Statistical Association. | |
dc.description.uri | http://libproxy1.nus.edu.sg/login?url=http://dx.doi.org/10.1198/jasa.2009.tm09372 | |
dc.source | Scopus | |
dc.subject | Censored data | |
dc.subject | Hazard function | |
dc.subject | Linear transformation model | |
dc.subject | Nonparametric regression | |
dc.type | Article | |
dc.contributor.department | STATISTICS & APPLIED PROBABILITY | |
dc.description.doi | 10.1198/jasa.2009.tm09372 | |
dc.description.sourcetitle | Journal of the American Statistical Association | |
dc.description.volume | 105 | |
dc.description.issue | 489 | |
dc.description.page | 278-290 | |
dc.identifier.isiut | 000276786500026 | |
Appears in Collections: | Staff Publications |
Show simple item record
Files in This Item:
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.