Please use this identifier to cite or link to this item: https://scholarbank.nus.edu.sg/handle/10635/105030
DC FieldValue
dc.titleAsymptotic uniform linearity of some robust statistics under exponentially subordinated strongly dependent models
dc.contributor.authorChen, S.
dc.contributor.authorMukherjee, K.
dc.date.accessioned2014-10-28T05:10:26Z
dc.date.available2014-10-28T05:10:26Z
dc.date.issued1999-08-15
dc.identifier.citationChen, S.,Mukherjee, K. (1999-08-15). Asymptotic uniform linearity of some robust statistics under exponentially subordinated strongly dependent models. Statistics and Probability Letters 44 (2) : 137-146. ScholarBank@NUS Repository.
dc.identifier.issn01677152
dc.identifier.urihttp://scholarbank.nus.edu.sg/handle/10635/105030
dc.description.abstractIn this paper, we discuss an asymptotic distributional theory of three broad classes of robust estimators of the regression parameter namely, L-, M- and R-estimators in a linear regression model when the errors are generated by an exponentially subordinated strongly dependent process. The results are obtained as a consequence of an asymptotic uniform Taylor-type expansion of certain randomly weighted empirical processes. The limiting distributions of the estimators are nonnormal and depend on the first nonzero index of the Laguerre polynomial expansion of a class of indicator functions of the error random variables. © 1998 Elsevier Science B.V.
dc.sourceScopus
dc.subjectL-
dc.subjectLaguerre expansion
dc.subjectM- and R-estimators
dc.subjectPrimary 62G20
dc.subjectRegression quantiles
dc.subjectSecondary 62M10
dc.subjectWeighted empirical processes
dc.typeArticle
dc.contributor.departmentSTATISTICS & APPLIED PROBABILITY
dc.description.sourcetitleStatistics and Probability Letters
dc.description.volume44
dc.description.issue2
dc.description.page137-146
dc.description.codenSPLTD
dc.identifier.isiutNOT_IN_WOS
Appears in Collections:Staff Publications

Show simple item record
Files in This Item:
There are no files associated with this item.

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.