Please use this identifier to cite or link to this item: https://doi.org/10.1088/0305-4470/30/2/013
DC FieldValue
dc.titleTwo-dimensional polymer configuration via mean-field theory
dc.contributor.authorPereira, G.G.
dc.date.accessioned2014-10-28T03:13:08Z
dc.date.available2014-10-28T03:13:08Z
dc.date.issued1997-01-21
dc.identifier.citationPereira, G.G. (1997-01-21). Two-dimensional polymer configuration via mean-field theory. Journal of Physics A: Mathematical and General 30 (2) : 467-483. ScholarBank@NUS Repository. https://doi.org/10.1088/0305-4470/30/2/013
dc.identifier.issn03054470
dc.identifier.urihttp://scholarbank.nus.edu.sg/handle/10635/104893
dc.description.abstractWe consider determining the configurational properties of a neutral polymer in two dimensions (2D) via self-consistent mean-field methods. By suitably scaling the problem we recover the Flory result for polymers under the excluded volume interaction, i.e. RN ∼ N3/4, where RN is the mean scaling length of a polymer which consists of (N + 1) monomers. If we let x denote the scaled distance from one end of the polymer to a point in space we find that there exists a point y*, where the scaled polymer density fN(x), decays rapidly to zero. Physically the existence of such a point is expected since the polymer has a finite length. For y* - x > O(N-1/3) we find fN(x) ∼ 1/2x[fN(x)-fN(y*)]1/2 while for x-y* > O(N-1/3) we obtain fN(x) ∼ o(1). We discuss the consequence of these results on the validity of the asymptotic methods used.
dc.sourceScopus
dc.typeArticle
dc.contributor.departmentCOMPUTATIONAL SCIENCE
dc.description.doi10.1088/0305-4470/30/2/013
dc.description.sourcetitleJournal of Physics A: Mathematical and General
dc.description.volume30
dc.description.issue2
dc.description.page467-483
dc.identifier.isiutA1997WG34400013
Appears in Collections:Staff Publications

Show simple item record
Files in This Item:
There are no files associated with this item.

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.