Please use this identifier to cite or link to this item:
https://doi.org/10.1016/S0010-4655(96)00112-9
DC Field | Value | |
---|---|---|
dc.title | Energy corrections in Hamiltonian dynamics simulations | |
dc.contributor.author | Zhang, F. | |
dc.date.accessioned | 2014-10-28T03:11:41Z | |
dc.date.available | 2014-10-28T03:11:41Z | |
dc.date.issued | 1996-12 | |
dc.identifier.citation | Zhang, F. (1996-12). Energy corrections in Hamiltonian dynamics simulations. Computer Physics Communications 99 (1) : 53-58. ScholarBank@NUS Repository. https://doi.org/10.1016/S0010-4655(96)00112-9 | |
dc.identifier.issn | 00104655 | |
dc.identifier.uri | http://scholarbank.nus.edu.sg/handle/10635/104777 | |
dc.description.abstract | We study two energy-correction algorithms for numerical simulations of Hamiltonian systems. The first algorithm, which corrects a trajectory after-the-fact, can significantly improve symplectic integrators by achieving a higher order of energy accuracy. The second algorithm, which corrects a trajectory along-the-way, can drastically improve the conventional Runge-Kutta schemes both in energy conservation and trajectory accuracy. We present extended numerical simulation results for a nonlinear oscillator and the well-known Hénon-Heiles model that exhibits chaotic dynamics. | |
dc.description.uri | http://libproxy1.nus.edu.sg/login?url=http://dx.doi.org/10.1016/S0010-4655(96)00112-9 | |
dc.source | Scopus | |
dc.subject | Energy conservation | |
dc.subject | Numerical algorithms | |
dc.subject | Symplectic | |
dc.type | Article | |
dc.contributor.department | COMPUTATIONAL SCIENCE | |
dc.description.doi | 10.1016/S0010-4655(96)00112-9 | |
dc.description.sourcetitle | Computer Physics Communications | |
dc.description.volume | 99 | |
dc.description.issue | 1 | |
dc.description.page | 53-58 | |
dc.description.coden | CPHCB | |
dc.identifier.isiut | A1996VW24100007 | |
Appears in Collections: | Staff Publications |
Show simple item record
Files in This Item:
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.