Please use this identifier to cite or link to this item: https://doi.org/10.1016/S0001-8708(02)00054-3
DC FieldValue
dc.titleAnalogues of Jacobi's inversion formula for the incomplete elliptic integral of the first kind
dc.contributor.authorChan, H.H.
dc.contributor.authorLiu, Z.-G.
dc.date.accessioned2014-10-28T02:52:33Z
dc.date.available2014-10-28T02:52:33Z
dc.date.issued2003-03-01
dc.identifier.citationChan, H.H., Liu, Z.-G. (2003-03-01). Analogues of Jacobi's inversion formula for the incomplete elliptic integral of the first kind. Advances in Mathematics 174 (1) : 69-88. ScholarBank@NUS Repository. https://doi.org/10.1016/S0001-8708(02)00054-3
dc.identifier.issn00018708
dc.identifier.urihttp://scholarbank.nus.edu.sg/handle/10635/104689
dc.description.abstractIn this article, we revisit Ramanujan's cubic analogue of Jacobi's inversion formula for the classical elliptic integral of the first kind. Our work is motivated by the recent work of Milne (Ramanujan J. 6(1) (2002) 7-149), Chan and Chua (Ramanujan J., to appear) on the representations of integers as sums of even squares. © 2003 Elsevier Science (USA). All rights reserved.
dc.description.urihttp://libproxy1.nus.edu.sg/login?url=http://dx.doi.org/10.1016/S0001-8708(02)00054-3
dc.sourceScopus
dc.subjectCubic theta functions
dc.subjectEisenstein series
dc.subjectIncomplete elliptic integrals
dc.typeReview
dc.contributor.departmentMATHEMATICS
dc.description.doi10.1016/S0001-8708(02)00054-3
dc.description.sourcetitleAdvances in Mathematics
dc.description.volume174
dc.description.issue1
dc.description.page69-88
dc.identifier.isiut000181491400004
Appears in Collections:Staff Publications

Show simple item record
Files in This Item:
There are no files associated with this item.

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.