Please use this identifier to cite or link to this item: https://scholarbank.nus.edu.sg/handle/10635/104657
Title: Algorithmic and complexity issues of three clustering methods in microarray data analysis
Authors: Tan, J.
Chua, K.S.
Zhang, L. 
Issue Date: 2005
Citation: Tan, J.,Chua, K.S.,Zhang, L. (2005). Algorithmic and complexity issues of three clustering methods in microarray data analysis. Lecture Notes in Computer Science 3595 : 74-83. ScholarBank@NUS Repository.
Abstract: The complexity, approximation and algorithmic issues of several clustering problems are studied. These non-traditional clustering problems arise from recent studies in microarray data analysis. We prove the following results. (1) Two variants of the Order-Preserving Submatrix problem are NP-hard. There are polynomial-time algorithms for the Order-Preserving Submatrix Problem when the condition or gene sets are given. (2) The Smooth Subset problem cannot be approximable with ratio 0.5 + δ for any constant δ > 0 unless NP=P. (3) Inferring plaid model problem is NP-hard. © Springer-Verlag Berlin Heidelberg 2005.
Source Title: Lecture Notes in Computer Science
URI: http://scholarbank.nus.edu.sg/handle/10635/104657
ISSN: 03029743
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.