Please use this identifier to cite or link to this item: https://doi.org/10.1016/j.tcs.2011.01.002
DC FieldValue
dc.titleUniversal recursively enumerable sets of strings
dc.contributor.authorCalude, C.S.
dc.contributor.authorNies, A.
dc.contributor.authorStaiger, L.
dc.contributor.authorStephan, F.
dc.date.accessioned2014-10-28T02:50:15Z
dc.date.available2014-10-28T02:50:15Z
dc.date.issued2011-05-13
dc.identifier.citationCalude, C.S., Nies, A., Staiger, L., Stephan, F. (2011-05-13). Universal recursively enumerable sets of strings. Theoretical Computer Science 412 (22) : 2253-2261. ScholarBank@NUS Repository. https://doi.org/10.1016/j.tcs.2011.01.002
dc.identifier.issn03043975
dc.identifier.urihttp://scholarbank.nus.edu.sg/handle/10635/104509
dc.description.abstractThe main topics of the present work are universal machines for plain and prefix-free description complexity and their domains. It is characterised when an r.e. set W is the domain of a universal plain machine in terms of the description complexity of the spectrum function sW mapping each non-negative integer n to the number of all strings of length n in W; furthermore, a characterisation of the same style is given for supersets of domains of universal plain machines. Similarly the prefix-free sets which are domains or supersets of domains of universal prefix-free machines are characterised. Furthermore, it is shown that the halting probability ΩV of an r.e. prefix-free set V containing the domain of a universal prefix-free machine is Martin-Lf random, while V may not be the domain of any universal prefix-free machine itself. Based on these investigations, the question whether every domain of a universal plain machine is the superset of the domain of some universal prefix-free machine is discussed. A negative answer to this question had been presented at CiE 2010 by Mikhail Andreev, Ilya Razenshteyn and Alexander Shen, while this paper was under review. © 2010 Elsevier B.V. All rights reserved.
dc.description.urihttp://libproxy1.nus.edu.sg/login?url=http://dx.doi.org/10.1016/j.tcs.2011.01.002
dc.sourceScopus
dc.subjectAlgorithmic information theory
dc.subjectDomains of universal machines
dc.subjectRecursively enumerable sets
dc.subjectUniversal machines
dc.typeArticle
dc.contributor.departmentMATHEMATICS
dc.description.doi10.1016/j.tcs.2011.01.002
dc.description.sourcetitleTheoretical Computer Science
dc.description.volume412
dc.description.issue22
dc.description.page2253-2261
dc.description.codenTCSCD
dc.identifier.isiut000289930300003
Appears in Collections:Staff Publications

Show simple item record
Files in This Item:
There are no files associated with this item.

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.