Please use this identifier to cite or link to this item: https://scholarbank.nus.edu.sg/handle/10635/104504
DC FieldValue
dc.titleOn Edge-Hamiltonian Property of Cayley Graphs
dc.contributor.authorChen, C.C.
dc.date.accessioned2014-10-28T02:50:12Z
dc.date.available2014-10-28T02:50:12Z
dc.date.issued1988
dc.identifier.citationChen, C.C. (1988). On Edge-Hamiltonian Property of Cayley Graphs. Annals of Discrete Mathematics 38 (1-3) : 29-33. ScholarBank@NUS Repository.
dc.identifier.issn0012365X
dc.identifier.issn01675060
dc.identifier.urihttp://scholarbank.nus.edu.sg/handle/10635/104504
dc.description.abstractLet G be a group generated by X. A Cayley graph over G is defined as a graph G(X) whose vertex set is G and whose edge set consists of all unordered pairs [a,b] with a, b ε{lunate} G and a-1b ε{lunate} X ∩ X-1, where X-1 denotes the set {x-1 {divides} x ε{lunate} X}. When X is a minimal generating set or each element of X is of even order, it can be shown that G(X) is Hamiltonian if it is edge-Hamiltonian. Hence every Cayley graph of order a power of 2 is edge-Hamiltonian. © 1988.
dc.sourceScopus
dc.typeArticle
dc.contributor.departmentMATHEMATICS
dc.description.sourcetitleAnnals of Discrete Mathematics
dc.description.volume38
dc.description.issue1-3
dc.description.page29-33
dc.description.codenDSMHA
dc.identifier.isiutNOT_IN_WOS
Appears in Collections:Staff Publications

Show simple item record
Files in This Item:
There are no files associated with this item.

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.