Please use this identifier to cite or link to this item: https://doi.org/10.1137/040609616
DC FieldValue
dc.titleA canonical form for the inclusion principle of dynamic systems
dc.contributor.authorChu, D.
dc.contributor.authorSiljak, D.D.
dc.date.accessioned2014-10-28T02:49:58Z
dc.date.available2014-10-28T02:49:58Z
dc.date.issued2006
dc.identifier.citationChu, D., Siljak, D.D. (2006). A canonical form for the inclusion principle of dynamic systems. SIAM Journal on Control and Optimization 44 (3) : 969-990. ScholarBank@NUS Repository. https://doi.org/10.1137/040609616
dc.identifier.issn03630129
dc.identifier.urihttp://scholarbank.nus.edu.sg/handle/10635/104489
dc.description.abstractThe inclusion principle provides a mathematical framework for comparing behavior of dynamic systems having different dimensions. Our main objective is to derive a canonical form for larger systems (expansions) that are obtained by expanding smaller systems (contractions). The form offers full freedom in selecting appropriate matrices for the expansion-contraction process. We will broaden the form to include feedback and propose an explicit characterization of contractible control laws subject to overlapping information structure constraints. © 2005 Society for Industrial and Applied Mathematics.
dc.description.urihttp://libproxy1.nus.edu.sg/login?url=http://dx.doi.org/10.1137/040609616
dc.sourceScopus
dc.subjectCanonical form
dc.subjectContraction
dc.subjectDecentralized control
dc.subjectExpansion
dc.subjectInclusion principle
dc.typeArticle
dc.contributor.departmentMATHEMATICS
dc.description.doi10.1137/040609616
dc.description.sourcetitleSIAM Journal on Control and Optimization
dc.description.volume44
dc.description.issue3
dc.description.page969-990
dc.description.codenSJCOD
dc.identifier.isiut000232561500008
Appears in Collections:Staff Publications

Show simple item record
Files in This Item:
There are no files associated with this item.

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.