Please use this identifier to cite or link to this item:
https://doi.org/10.1137/110849237
DC Field | Value | |
---|---|---|
dc.title | Viscous conservation laws with boundary | |
dc.contributor.author | Deng, S. | |
dc.contributor.author | Wang, W. | |
dc.contributor.author | Yu, S.-H. | |
dc.date.accessioned | 2014-10-28T02:49:35Z | |
dc.date.available | 2014-10-28T02:49:35Z | |
dc.date.issued | 2012 | |
dc.identifier.citation | Deng, S., Wang, W., Yu, S.-H. (2012). Viscous conservation laws with boundary. SIAM Journal on Mathematical Analysis 44 (4) : 2695-2755. ScholarBank@NUS Repository. https://doi.org/10.1137/110849237 | |
dc.identifier.issn | 00361410 | |
dc.identifier.uri | http://scholarbank.nus.edu.sg/handle/10635/104454 | |
dc.description.abstract | In this paper, we continue the scale separation approach, introduced in [S.-H. Yu, J. Amer. Math. Soc., 23 (2010), pp. 1041-1118] for the Boltzmann equation, to construct the linear wave propagation over a viscous shock profile. We have obtained exponentially sharp pointwise structure of the linear wave propagation and apply it to yield pointwise time-asymptotic convergence rate to a viscous shock profile for initial-boundary value problem. © 2012 Society for Industrial and Applied Mathematics. | |
dc.description.uri | http://libproxy1.nus.edu.sg/login?url=http://dx.doi.org/10.1137/110849237 | |
dc.source | Scopus | |
dc.subject | Boundary | |
dc.subject | Compressive part | |
dc.subject | Green's function | |
dc.subject | Shock stability | |
dc.subject | T-C scheme | |
dc.subject | Transversal part | |
dc.type | Article | |
dc.contributor.department | MATHEMATICS | |
dc.description.doi | 10.1137/110849237 | |
dc.description.sourcetitle | SIAM Journal on Mathematical Analysis | |
dc.description.volume | 44 | |
dc.description.issue | 4 | |
dc.description.page | 2695-2755 | |
dc.identifier.isiut | 000310137800019 | |
Appears in Collections: | Staff Publications |
Show simple item record
Files in This Item:
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.