Please use this identifier to cite or link to this item: https://doi.org/10.1016/j.acha.2010.04.002
DC FieldValue
dc.titleTopological and geometric properties of refinable functions and MRA affine frames
dc.contributor.authorHan, D.
dc.contributor.authorSun, Q.
dc.contributor.authorTang, W.-S.
dc.date.accessioned2014-10-28T02:48:43Z
dc.date.available2014-10-28T02:48:43Z
dc.date.issued2011-03
dc.identifier.citationHan, D., Sun, Q., Tang, W.-S. (2011-03). Topological and geometric properties of refinable functions and MRA affine frames. Applied and Computational Harmonic Analysis 30 (2) : 151-174. ScholarBank@NUS Repository. https://doi.org/10.1016/j.acha.2010.04.002
dc.identifier.issn10635203
dc.identifier.urihttp://scholarbank.nus.edu.sg/handle/10635/104384
dc.description.abstractWe investigate some topological and geometric properties of the set R of all refinable functions in L2(Rd), and of the set of all MRA affine frames. We prove that R is nowhere dense in L2(Rd); the unit sphere of R is path-connected in the L2-norm; and for any M-dimensional hyperplane generated by L2-functions f0,...,fM, either almost all the functions in the hyperplane are refinable or almost all the functions in the hyperplane are not refinable. We show that the set of all MRA affine frames is nowhere dense in L2(Rd). We also obtain a new characterization of the L2-closure R̄ of R, and extend the above topological and geometric results from R to R̄, and even further to the set of all refinable vectors and its L2-closure. © 2010 Elsevier Inc. All rights reserved.
dc.description.urihttp://libproxy1.nus.edu.sg/login?url=http://dx.doi.org/10.1016/j.acha.2010.04.002
dc.sourceScopus
dc.subjectAffine frame
dc.subjectMultiresolution analysis
dc.subjectNowhere density
dc.subjectPath-connectivity
dc.subjectRefinable functions
dc.typeArticle
dc.contributor.departmentMATHEMATICS
dc.description.doi10.1016/j.acha.2010.04.002
dc.description.sourcetitleApplied and Computational Harmonic Analysis
dc.description.volume30
dc.description.issue2
dc.description.page151-174
dc.description.codenACOHE
dc.identifier.isiut000286705400002
Appears in Collections:Staff Publications

Show simple item record
Files in This Item:
There are no files associated with this item.

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.