Please use this identifier to cite or link to this item: https://doi.org/10.1007/BF02785966
DC FieldValue
dc.titleThere exists a maximal 3-C.E. enumeration degree
dc.contributor.authorCooper, S.B.
dc.contributor.authorLi, A.
dc.contributor.authorSorbi, A.
dc.contributor.authorYang, Y.
dc.date.accessioned2014-10-28T02:48:31Z
dc.date.available2014-10-28T02:48:31Z
dc.date.issued2003-12
dc.identifier.citationCooper, S.B., Li, A., Sorbi, A., Yang, Y. (2003-12). There exists a maximal 3-C.E. enumeration degree. Israel Journal of Mathematics 137 (1) : 285-320. ScholarBank@NUS Repository. https://doi.org/10.1007/BF02785966
dc.identifier.issn00212172
dc.identifier.urihttp://scholarbank.nus.edu.sg/handle/10635/104372
dc.description.abstractWe construct an incomplete 3-c.e. enumeration degree which is maximal among then-c.e. enumeration degrees for everyn with 3 ≤ n ≤ ω. Consequently then-c.e. enumeration degrees are not dense for any suchn. We show also that no lown-c.e. e-degree can be maximal among then-c.e. e-degrees, for 2 ≤ n ≤ ω. © 2003 Hebrew University.
dc.description.urihttp://libproxy1.nus.edu.sg/login?url=http://dx.doi.org/10.1007/BF02785966
dc.sourceScopus
dc.typeArticle
dc.contributor.departmentMATHEMATICS
dc.description.doi10.1007/BF02785966
dc.description.sourcetitleIsrael Journal of Mathematics
dc.description.volume137
dc.description.issue1
dc.description.page285-320
dc.identifier.isiut000221618100013
Appears in Collections:Staff Publications

Show simple item record
Files in This Item:
There are no files associated with this item.

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.