Please use this identifier to cite or link to this item:
https://doi.org/10.1007/BF02785966
DC Field | Value | |
---|---|---|
dc.title | There exists a maximal 3-C.E. enumeration degree | |
dc.contributor.author | Cooper, S.B. | |
dc.contributor.author | Li, A. | |
dc.contributor.author | Sorbi, A. | |
dc.contributor.author | Yang, Y. | |
dc.date.accessioned | 2014-10-28T02:48:31Z | |
dc.date.available | 2014-10-28T02:48:31Z | |
dc.date.issued | 2003-12 | |
dc.identifier.citation | Cooper, S.B., Li, A., Sorbi, A., Yang, Y. (2003-12). There exists a maximal 3-C.E. enumeration degree. Israel Journal of Mathematics 137 (1) : 285-320. ScholarBank@NUS Repository. https://doi.org/10.1007/BF02785966 | |
dc.identifier.issn | 00212172 | |
dc.identifier.uri | http://scholarbank.nus.edu.sg/handle/10635/104372 | |
dc.description.abstract | We construct an incomplete 3-c.e. enumeration degree which is maximal among then-c.e. enumeration degrees for everyn with 3 ≤ n ≤ ω. Consequently then-c.e. enumeration degrees are not dense for any suchn. We show also that no lown-c.e. e-degree can be maximal among then-c.e. e-degrees, for 2 ≤ n ≤ ω. © 2003 Hebrew University. | |
dc.description.uri | http://libproxy1.nus.edu.sg/login?url=http://dx.doi.org/10.1007/BF02785966 | |
dc.source | Scopus | |
dc.type | Article | |
dc.contributor.department | MATHEMATICS | |
dc.description.doi | 10.1007/BF02785966 | |
dc.description.sourcetitle | Israel Journal of Mathematics | |
dc.description.volume | 137 | |
dc.description.issue | 1 | |
dc.description.page | 285-320 | |
dc.identifier.isiut | 000221618100013 | |
Appears in Collections: | Staff Publications |
Show simple item record
Files in This Item:
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.