Please use this identifier to cite or link to this item: https://scholarbank.nus.edu.sg/handle/10635/104339
DC FieldValue
dc.titleThe Rank of a Latin Square associated to an abelian group
dc.contributor.authorLeung, K.H.
dc.contributor.authorLing, S.
dc.date.accessioned2014-10-28T02:48:08Z
dc.date.available2014-10-28T02:48:08Z
dc.date.issued2000
dc.identifier.citationLeung, K.H.,Ling, S. (2000). The Rank of a Latin Square associated to an abelian group. Communications in Algebra 28 (3) : 1141-1155. ScholarBank@NUS Repository.
dc.identifier.issn00927872
dc.identifier.urihttp://scholarbank.nus.edu.sg/handle/10635/104339
dc.description.abstractLet G ≃ ℤ/2ℤ × ℤ/2ℤ × Πi=1 r (ℤ/pi tiℤ) be a finite abelian group, where pi (1 ≤ i ≤ r) are (not necessarily distinct) odd primes. Suppose x = ∑g∈Gxgg ∈ ℤ[G] with {xg : g ∈ G} = {1, . . . , |G|}. Using a result of Carlitz and Moser, we show that |{χ ∈ G* : χ(x) ≠ 0}| ≥ 3 + ∑ φ)pi ti). Consequently, we prove that the rank of any Latin square associated with the group G is at least 3 + ∑ φ(pi ti). This sharpens a result in [2]. Copyright © 2000 by Marcel Dekker, Inc.
dc.sourceScopus
dc.typeArticle
dc.contributor.departmentMATHEMATICS
dc.description.sourcetitleCommunications in Algebra
dc.description.volume28
dc.description.issue3
dc.description.page1141-1155
dc.identifier.isiutNOT_IN_WOS
Appears in Collections:Staff Publications

Show simple item record
Files in This Item:
There are no files associated with this item.

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.