Please use this identifier to cite or link to this item:
https://scholarbank.nus.edu.sg/handle/10635/104339
DC Field | Value | |
---|---|---|
dc.title | The Rank of a Latin Square associated to an abelian group | |
dc.contributor.author | Leung, K.H. | |
dc.contributor.author | Ling, S. | |
dc.date.accessioned | 2014-10-28T02:48:08Z | |
dc.date.available | 2014-10-28T02:48:08Z | |
dc.date.issued | 2000 | |
dc.identifier.citation | Leung, K.H.,Ling, S. (2000). The Rank of a Latin Square associated to an abelian group. Communications in Algebra 28 (3) : 1141-1155. ScholarBank@NUS Repository. | |
dc.identifier.issn | 00927872 | |
dc.identifier.uri | http://scholarbank.nus.edu.sg/handle/10635/104339 | |
dc.description.abstract | Let G ≃ ℤ/2ℤ × ℤ/2ℤ × Πi=1 r (ℤ/pi tiℤ) be a finite abelian group, where pi (1 ≤ i ≤ r) are (not necessarily distinct) odd primes. Suppose x = ∑g∈Gxgg ∈ ℤ[G] with {xg : g ∈ G} = {1, . . . , |G|}. Using a result of Carlitz and Moser, we show that |{χ ∈ G* : χ(x) ≠ 0}| ≥ 3 + ∑ φ)pi ti). Consequently, we prove that the rank of any Latin square associated with the group G is at least 3 + ∑ φ(pi ti). This sharpens a result in [2]. Copyright © 2000 by Marcel Dekker, Inc. | |
dc.source | Scopus | |
dc.type | Article | |
dc.contributor.department | MATHEMATICS | |
dc.description.sourcetitle | Communications in Algebra | |
dc.description.volume | 28 | |
dc.description.issue | 3 | |
dc.description.page | 1141-1155 | |
dc.identifier.isiut | NOT_IN_WOS | |
Appears in Collections: | Staff Publications |
Show simple item record
Files in This Item:
There are no files associated with this item.
Google ScholarTM
Check
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.