Please use this identifier to cite or link to this item: https://doi.org/10.1016/j.nuclphysb.2005.10.008
DC FieldValue
dc.titleThe most probable size of the Universe
dc.contributor.authorMcInnes, B.
dc.date.accessioned2014-10-28T02:47:51Z
dc.date.available2014-10-28T02:47:51Z
dc.date.issued2005-12-05
dc.identifier.citationMcInnes, B. (2005-12-05). The most probable size of the Universe. Nuclear Physics B 730 (1-2) : 50-81. ScholarBank@NUS Repository. https://doi.org/10.1016/j.nuclphysb.2005.10.008
dc.identifier.issn05503213
dc.identifier.urihttp://scholarbank.nus.edu.sg/handle/10635/104319
dc.description.abstractIt has recently been suggested, by Firouzjahi, Sarangi, and Tye, that string-motivated modifications of the Hartle-Hawking wave function predict that our Universe came into existence from "nothing" with a de Sitter-like spacetime geometry and a spacetime curvature similar to that of "low-scale" models of Inflation. This means, however, that the Universe was quite large at birth. It would be preferable for the initial scale to be close to the string scale (or perhaps the Planck scale). The problem with this, however, is to explain how any initial homogeneity is preserved during the pre-inflationary era, so that inflation can indeed begin. Here we modify a suggestion due to Linde and assume that the Universe was born with the topology of a torus; however, we propose that the size of the torus is to be predicted by the FST wave function. The latter does predict an initial size for the torus at about the string scale, and it also predicts a pre-inflationary spacetime geometry such that chaotic mixing preserves any initial homogeneity until Inflation can begin at a relatively low scale. © 2005 Published by Elsevier B.V.
dc.description.urihttp://libproxy1.nus.edu.sg/login?url=http://dx.doi.org/10.1016/j.nuclphysb.2005.10.008
dc.sourceScopus
dc.typeArticle
dc.contributor.departmentMATHEMATICS
dc.description.doi10.1016/j.nuclphysb.2005.10.008
dc.description.sourcetitleNuclear Physics B
dc.description.volume730
dc.description.issue1-2
dc.description.page50-81
dc.description.codenNUPBB
dc.identifier.isiut000233499600003
Appears in Collections:Staff Publications

Show simple item record
Files in This Item:
There are no files associated with this item.

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.