Please use this identifier to cite or link to this item: https://doi.org/10.1016/j.apal.2004.04.010
DC FieldValue
dc.titleThe minimal e-degree problem in fragments of Peano arithmetic
dc.contributor.authorArslanov, M.M.
dc.contributor.authorChong, C.T.
dc.contributor.authorCooper, S.B.
dc.contributor.authorYang, Y.
dc.date.accessioned2014-10-28T02:47:49Z
dc.date.available2014-10-28T02:47:49Z
dc.date.issued2005-01
dc.identifier.citationArslanov, M.M., Chong, C.T., Cooper, S.B., Yang, Y. (2005-01). The minimal e-degree problem in fragments of Peano arithmetic. Annals of Pure and Applied Logic 131 (1-3) : 159-175. ScholarBank@NUS Repository. https://doi.org/10.1016/j.apal.2004.04.010
dc.identifier.issn01680072
dc.identifier.urihttp://scholarbank.nus.edu.sg/handle/10635/104316
dc.description.abstractWe study the minimal enumeration degree (e-degree) problem in models of fragments of Peano arithmetic (PA) and prove the following results: in any model M of Σ2 induction, there is a minimal enumeration degree if and only if M is a nonstandard model. Furthermore, any cut in such a model has minimal e-degree. By contrast, this phenomenon fails in the absence of Σ2 induction. In fact, whether every Σ2 cut has minimal e-degree is independent of the Σ2 bounding principle. © 2004 Elsevier B.V. All rights reserved.
dc.description.urihttp://libproxy1.nus.edu.sg/login?url=http://dx.doi.org/10.1016/j.apal.2004.04.010
dc.sourceScopus
dc.typeArticle
dc.contributor.departmentMATHEMATICS
dc.description.doi10.1016/j.apal.2004.04.010
dc.description.sourcetitleAnnals of Pure and Applied Logic
dc.description.volume131
dc.description.issue1-3
dc.description.page159-175
dc.description.codenAPALD
dc.identifier.isiut000225010400005
Appears in Collections:Staff Publications

Show simple item record
Files in This Item:
There are no files associated with this item.

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.