Please use this identifier to cite or link to this item:
https://doi.org/10.1016/j.apal.2004.04.010
DC Field | Value | |
---|---|---|
dc.title | The minimal e-degree problem in fragments of Peano arithmetic | |
dc.contributor.author | Arslanov, M.M. | |
dc.contributor.author | Chong, C.T. | |
dc.contributor.author | Cooper, S.B. | |
dc.contributor.author | Yang, Y. | |
dc.date.accessioned | 2014-10-28T02:47:49Z | |
dc.date.available | 2014-10-28T02:47:49Z | |
dc.date.issued | 2005-01 | |
dc.identifier.citation | Arslanov, M.M., Chong, C.T., Cooper, S.B., Yang, Y. (2005-01). The minimal e-degree problem in fragments of Peano arithmetic. Annals of Pure and Applied Logic 131 (1-3) : 159-175. ScholarBank@NUS Repository. https://doi.org/10.1016/j.apal.2004.04.010 | |
dc.identifier.issn | 01680072 | |
dc.identifier.uri | http://scholarbank.nus.edu.sg/handle/10635/104316 | |
dc.description.abstract | We study the minimal enumeration degree (e-degree) problem in models of fragments of Peano arithmetic (PA) and prove the following results: in any model M of Σ2 induction, there is a minimal enumeration degree if and only if M is a nonstandard model. Furthermore, any cut in such a model has minimal e-degree. By contrast, this phenomenon fails in the absence of Σ2 induction. In fact, whether every Σ2 cut has minimal e-degree is independent of the Σ2 bounding principle. © 2004 Elsevier B.V. All rights reserved. | |
dc.description.uri | http://libproxy1.nus.edu.sg/login?url=http://dx.doi.org/10.1016/j.apal.2004.04.010 | |
dc.source | Scopus | |
dc.type | Article | |
dc.contributor.department | MATHEMATICS | |
dc.description.doi | 10.1016/j.apal.2004.04.010 | |
dc.description.sourcetitle | Annals of Pure and Applied Logic | |
dc.description.volume | 131 | |
dc.description.issue | 1-3 | |
dc.description.page | 159-175 | |
dc.description.coden | APALD | |
dc.identifier.isiut | 000225010400005 | |
Appears in Collections: | Staff Publications |
Show simple item record
Files in This Item:
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.