Please use this identifier to cite or link to this item: https://doi.org/10.1007/s00440-005-0468-x
DC FieldValue
dc.titleThe essential equivalence of pairwise and mutual conditional independence
dc.contributor.authorHammond, P.J.
dc.contributor.authorSun, Y.
dc.date.accessioned2014-10-28T02:47:31Z
dc.date.available2014-10-28T02:47:31Z
dc.date.issued2006-07
dc.identifier.citationHammond, P.J., Sun, Y. (2006-07). The essential equivalence of pairwise and mutual conditional independence. Probability Theory and Related Fields 135 (3) : 415-427. ScholarBank@NUS Repository. https://doi.org/10.1007/s00440-005-0468-x
dc.identifier.issn01788051
dc.identifier.urihttp://scholarbank.nus.edu.sg/handle/10635/104287
dc.description.abstractFor a large collection of random variables, pairwise conditional independence and mutual conditional independence are shown to be essentially equivalent - i.e., equivalent to up to null sets. Unlike in the finite setting, a large collection of random variables remains essentially conditionally independent under further conditioning. The essential equivalence of pairwise and multiple versions of exchangeability also follows as a corollary. Our result relies on an iterated extension of Bledsoe and Morse's completion of the product of two measure spaces.
dc.description.urihttp://libproxy1.nus.edu.sg/login?url=http://dx.doi.org/10.1007/s00440-005-0468-x
dc.sourceScopus
dc.typeArticle
dc.contributor.departmentMATHEMATICS
dc.description.doi10.1007/s00440-005-0468-x
dc.description.sourcetitleProbability Theory and Related Fields
dc.description.volume135
dc.description.issue3
dc.description.page415-427
dc.identifier.isiut000236952300005
Appears in Collections:Staff Publications

Show simple item record
Files in This Item:
There are no files associated with this item.

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.