Please use this identifier to cite or link to this item: https://doi.org/10.1007/s10455-013-9373-1
DC FieldValue
dc.titleThe complete hyper-surfaces with zero scalar curvature in ℝn+1
dc.contributor.authorYaowen, L.
dc.contributor.authorXingwang, X.
dc.contributor.authorJiuru, Z.
dc.date.accessioned2014-10-28T02:47:15Z
dc.date.available2014-10-28T02:47:15Z
dc.date.issued2013-12
dc.identifier.citationYaowen, L., Xingwang, X., Jiuru, Z. (2013-12). The complete hyper-surfaces with zero scalar curvature in ℝn+1. Annals of Global Analysis and Geometry 44 (4) : 401-416. ScholarBank@NUS Repository. https://doi.org/10.1007/s10455-013-9373-1
dc.identifier.issn0232704X
dc.identifier.urihttp://scholarbank.nus.edu.sg/handle/10635/104266
dc.description.abstractLet Mn be a complete and noncompact hyper-surface immersed in Rn+1. We should show that if M is of finite total curvature and Ricci flat, then M turns out to be a hyperplane. Meanwhile, the hyper-surfaces with the vanishing scalar curvature is also considered in this paper. It can be shown that if the total curvature is sufficiently small, then by refined Kato's inequality, conformal flatness and flatness are equivalent in some sense. And those results should be compared with Hartman and Nirenberg's similar results with flat curvature assumption. © 2013 The Author(s).
dc.description.urihttp://libproxy1.nus.edu.sg/login?url=http://dx.doi.org/10.1007/s10455-013-9373-1
dc.sourceScopus
dc.subjectBernstein type theorems
dc.subjectEnds
dc.subjectScalar curvature
dc.subjectSobolev inequality
dc.typeArticle
dc.contributor.departmentMATHEMATICS
dc.description.doi10.1007/s10455-013-9373-1
dc.description.sourcetitleAnnals of Global Analysis and Geometry
dc.description.volume44
dc.description.issue4
dc.description.page401-416
dc.identifier.isiut000327452200004
Appears in Collections:Staff Publications

Show simple item record
Files in This Item:
There are no files associated with this item.

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.