Please use this identifier to cite or link to this item: https://doi.org/10.1017/S0308210512000480
DC FieldValue
dc.titleSuspension splittings and James-Hopf invariants
dc.contributor.authorGrbić, J.
dc.contributor.authorTheriault, S.
dc.contributor.authorWu, J.
dc.date.accessioned2014-10-28T02:46:50Z
dc.date.available2014-10-28T02:46:50Z
dc.date.issued2014-02
dc.identifier.citationGrbić, J., Theriault, S., Wu, J. (2014-02). Suspension splittings and James-Hopf invariants. Proceedings of the Royal Society of Edinburgh Section A: Mathematics 144 (1) : 87-108. ScholarBank@NUS Repository. https://doi.org/10.1017/S0308210512000480
dc.identifier.issn03082105
dc.identifier.urihttp://scholarbank.nus.edu.sg/handle/10635/104233
dc.description.abstractJames constructed a functorial homotopy decomposition for path-connected, p ointed CW-complexes X. We generalize this to a p-local functorial decomposition of ΣA, where A is any functorial retract of a looped co-H-space. This is used to construct Hopf invariants in a more general context. In addition, when A = ΩY is the loops space of a co-H-space, we show that the wedge summands of ΣΩY further functorially decompose by using an action of an appropriate symmetric group. As a valuable example, we give an application to the theory of quasi-symmetric functions. © 2014 The Royal Society of Edinburgh.
dc.description.urihttp://libproxy1.nus.edu.sg/login?url=http://dx.doi.org/10.1017/S0308210512000480
dc.sourceScopus
dc.typeArticle
dc.contributor.departmentMATHEMATICS
dc.description.doi10.1017/S0308210512000480
dc.description.sourcetitleProceedings of the Royal Society of Edinburgh Section A: Mathematics
dc.description.volume144
dc.description.issue1
dc.description.page87-108
dc.identifier.isiut000338293400005
Appears in Collections:Staff Publications

Show simple item record
Files in This Item:
There are no files associated with this item.

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.