Please use this identifier to cite or link to this item:
https://doi.org/10.1006/jmaa.2001.7479
Title: | Stability of the shifts of global supported distributions | Authors: | Sun, Q. | Issue Date: | 1-Sep-2001 | Citation: | Sun, Q. (2001-09-01). Stability of the shifts of global supported distributions. Journal of Mathematical Analysis and Applications 261 (1) : 113-125. ScholarBank@NUS Repository. https://doi.org/10.1006/jmaa.2001.7479 | Abstract: | For a tempered distribution with ℓ1 decay, we characterize its stable shifts via its Fourier transform and via a shift-invariant space of summable sequences. Also we show that if the tempered distribution with ℓ1 decay has stable shifts, then we can recover all distributions in V∞, the space of all linear combinations of its shifts using bounded sequences, in a stable way using C∞ dual functions with ℓ1 decay at infinity. If, additionally, that tempered distribution is compactly supported, then the above C∞ dual functions can be chosen to have exponential decay at infinity. © 2001 Academic Press. | Source Title: | Journal of Mathematical Analysis and Applications | URI: | http://scholarbank.nus.edu.sg/handle/10635/104190 | ISSN: | 0022247X | DOI: | 10.1006/jmaa.2001.7479 |
Appears in Collections: | Staff Publications |
Show full item record
Files in This Item:
There are no files associated with this item.
SCOPUSTM
Citations
7
checked on Mar 24, 2023
WEB OF SCIENCETM
Citations
7
checked on Mar 16, 2023
Page view(s)
168
checked on Mar 16, 2023
Google ScholarTM
Check
Altmetric
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.