Please use this identifier to cite or link to this item: https://doi.org/10.1016/j.jpaa.2008.04.011
DC FieldValue
dc.titleSome calculations of Lie (n)max for low n
dc.contributor.authorSelick, P.
dc.contributor.authorWu, J.
dc.date.accessioned2014-10-28T02:45:55Z
dc.date.available2014-10-28T02:45:55Z
dc.date.issued2008-11
dc.identifier.citationSelick, P., Wu, J. (2008-11). Some calculations of Lie (n)max for low n. Journal of Pure and Applied Algebra 212 (11) : 2570-2580. ScholarBank@NUS Repository. https://doi.org/10.1016/j.jpaa.2008.04.011
dc.identifier.issn00224049
dc.identifier.urihttp://scholarbank.nus.edu.sg/handle/10635/104155
dc.description.abstractIn a previous paper, the authors gave the finest functorial decomposition of the loop suspension of a p-torsion suspension. In order to determine the decomposition, one must know the maximum projective submodule of Lie (n), which we label Liemax (n). The purpose of this paper is to give some sample calculations of Liemax (n) for low n when p = 2. © 2008 Elsevier B.V. All rights reserved.
dc.description.urihttp://libproxy1.nus.edu.sg/login?url=http://dx.doi.org/10.1016/j.jpaa.2008.04.011
dc.sourceScopus
dc.typeArticle
dc.contributor.departmentMATHEMATICS
dc.description.doi10.1016/j.jpaa.2008.04.011
dc.description.sourcetitleJournal of Pure and Applied Algebra
dc.description.volume212
dc.description.issue11
dc.description.page2570-2580
dc.description.codenJPAAA
dc.identifier.isiut000259052600018
Appears in Collections:Staff Publications

Show simple item record
Files in This Item:
There are no files associated with this item.

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.