Please use this identifier to cite or link to this item:
https://scholarbank.nus.edu.sg/handle/10635/104136
Title: | Small Eigenvalues of the Laplacians on Vector Bundles over Towers of Covers | Authors: | To, W.-K. | Keywords: | Asymptotic formulas Eigenvalues Harmonic forms Tower of covers |
Issue Date: | 1997 | Citation: | To, W.-K. (1997). Small Eigenvalues of the Laplacians on Vector Bundles over Towers of Covers. Annals of Global Analysis and Geometry 15 (1) : 27-44. ScholarBank@NUS Repository. | Abstract: | Under the conditions that a compact Riemannian manifold is of sufficiently pinched negative sectional curvature and that a smooth Hermitian vector bundle over the manifold is also of sufficiently small curvature, we prove some pinching results on the asymptotic behavior of the numbers of small eigenvalues of the Laplacians on the induced Hermitian vector bundles over a tower of covers of the manifold. In the process we also obtain interesting results on the non-existence of square integrable 'almost harmonic' vector bundle-valued forms omitting the middle degree(s) on the universal cover. | Source Title: | Annals of Global Analysis and Geometry | URI: | http://scholarbank.nus.edu.sg/handle/10635/104136 | ISSN: | 0232704X |
Appears in Collections: | Staff Publications |
Show full item record
Files in This Item:
There are no files associated with this item.
Google ScholarTM
Check
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.