Please use this identifier to cite or link to this item: https://doi.org/10.1016/j.jfa.2008.05.012
DC FieldValue
dc.titleSelf-improving properties of inequalities of Poincaré type on measure spaces and applications
dc.contributor.authorChua, S.-K.
dc.contributor.authorWheeden, R.L.
dc.date.accessioned2014-10-28T02:45:03Z
dc.date.available2014-10-28T02:45:03Z
dc.date.issued2008-12-01
dc.identifier.citationChua, S.-K., Wheeden, R.L. (2008-12-01). Self-improving properties of inequalities of Poincaré type on measure spaces and applications. Journal of Functional Analysis 255 (11) : 2977-3007. ScholarBank@NUS Repository. https://doi.org/10.1016/j.jfa.2008.05.012
dc.identifier.issn00221236
dc.identifier.urihttp://scholarbank.nus.edu.sg/handle/10635/104086
dc.description.abstractWe show that the self-improving nature of Poincaré estimates persists for domains in rather general measure spaces. We consider both weak type and strong type inequalities, extending techniques of B. Franchi, C. Pérez and R. Wheeden. As an application in spaces of homogeneous type, we derive global Poincaré estimates for a class of domains with rough boundaries that we call φ{symbol}-John domains, and we show that such domains have the requisite properties. This class includes John (or Boman) domains as well as s-John domains. Further applications appear in a companion paper. © 2008 Elsevier Inc. All rights reserved.
dc.description.urihttp://libproxy1.nus.edu.sg/login?url=http://dx.doi.org/10.1016/j.jfa.2008.05.012
dc.sourceScopus
dc.subjectGlobal Poincaré estimates
dc.subjectPower type weights
dc.subjectQuasimetric spaces
dc.subjects-John domains
dc.typeArticle
dc.contributor.departmentMATHEMATICS
dc.description.doi10.1016/j.jfa.2008.05.012
dc.description.sourcetitleJournal of Functional Analysis
dc.description.volume255
dc.description.issue11
dc.description.page2977-3007
dc.description.codenJFUAA
dc.identifier.isiut000261022400001
Appears in Collections:Staff Publications

Show simple item record
Files in This Item:
There are no files associated with this item.

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.