Please use this identifier to cite or link to this item: https://doi.org/10.1006/jfan.1994.1028
DC FieldValue
dc.titleQuivers and the Invariant Theory of Levi Subgroups
dc.contributor.authorAslaksen, H.
dc.contributor.authorTan, E.C.
dc.contributor.authorZhu, C.B.
dc.date.accessioned2014-10-28T02:44:11Z
dc.date.available2014-10-28T02:44:11Z
dc.date.issued1994-02-15
dc.identifier.citationAslaksen, H., Tan, E.C., Zhu, C.B. (1994-02-15). Quivers and the Invariant Theory of Levi Subgroups. Journal of Functional Analysis 120 (1) : 163-187. ScholarBank@NUS Repository. https://doi.org/10.1006/jfan.1994.1028
dc.identifier.issn00221236
dc.identifier.urihttp://scholarbank.nus.edu.sg/handle/10635/104012
dc.description.abstractWe develop a theory of invariants using the formalism of quivers, generalizing earlier results attributed to Procesi. As an application, let H be the Levi component of a parabolic subgroup of a classical Lie group G with Lie algebra g. We describe a finite set of generators for P[g]H, the space of H-invariant polynomials on g, as well as the H-invariants in the universal enveloping algebra, U(g)H, thus generalizing the results of Klink and Ton-That, and Zhu. © 1994 Academic Press. All rights reserved.
dc.description.urihttp://libproxy1.nus.edu.sg/login?url=http://dx.doi.org/10.1006/jfan.1994.1028
dc.sourceScopus
dc.typeArticle
dc.contributor.departmentMATHEMATICS
dc.description.doi10.1006/jfan.1994.1028
dc.description.sourcetitleJournal of Functional Analysis
dc.description.volume120
dc.description.issue1
dc.description.page163-187
dc.description.codenJFUAA
dc.identifier.isiutA1994NA06400008
Appears in Collections:Staff Publications

Show simple item record
Files in This Item:
There are no files associated with this item.

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.