Please use this identifier to cite or link to this item:
https://doi.org/10.1006/jfan.1994.1028
DC Field | Value | |
---|---|---|
dc.title | Quivers and the Invariant Theory of Levi Subgroups | |
dc.contributor.author | Aslaksen, H. | |
dc.contributor.author | Tan, E.C. | |
dc.contributor.author | Zhu, C.B. | |
dc.date.accessioned | 2014-10-28T02:44:11Z | |
dc.date.available | 2014-10-28T02:44:11Z | |
dc.date.issued | 1994-02-15 | |
dc.identifier.citation | Aslaksen, H., Tan, E.C., Zhu, C.B. (1994-02-15). Quivers and the Invariant Theory of Levi Subgroups. Journal of Functional Analysis 120 (1) : 163-187. ScholarBank@NUS Repository. https://doi.org/10.1006/jfan.1994.1028 | |
dc.identifier.issn | 00221236 | |
dc.identifier.uri | http://scholarbank.nus.edu.sg/handle/10635/104012 | |
dc.description.abstract | We develop a theory of invariants using the formalism of quivers, generalizing earlier results attributed to Procesi. As an application, let H be the Levi component of a parabolic subgroup of a classical Lie group G with Lie algebra g. We describe a finite set of generators for P[g]H, the space of H-invariant polynomials on g, as well as the H-invariants in the universal enveloping algebra, U(g)H, thus generalizing the results of Klink and Ton-That, and Zhu. © 1994 Academic Press. All rights reserved. | |
dc.description.uri | http://libproxy1.nus.edu.sg/login?url=http://dx.doi.org/10.1006/jfan.1994.1028 | |
dc.source | Scopus | |
dc.type | Article | |
dc.contributor.department | MATHEMATICS | |
dc.description.doi | 10.1006/jfan.1994.1028 | |
dc.description.sourcetitle | Journal of Functional Analysis | |
dc.description.volume | 120 | |
dc.description.issue | 1 | |
dc.description.page | 163-187 | |
dc.description.coden | JFUAA | |
dc.identifier.isiut | A1994NA06400008 | |
Appears in Collections: | Staff Publications |
Show simple item record
Files in This Item:
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.