Please use this identifier to cite or link to this item: https://doi.org/10.1137/070684173
DC FieldValue
dc.titleQualitative analysis of a prey-predator model with stage structure for the predator
dc.contributor.authorYihong, D.U.
dc.contributor.authorPang, P.Y.H.
dc.contributor.authorWang, M.
dc.date.accessioned2014-10-28T02:44:05Z
dc.date.available2014-10-28T02:44:05Z
dc.date.issued2008
dc.identifier.citationYihong, D.U., Pang, P.Y.H., Wang, M. (2008). Qualitative analysis of a prey-predator model with stage structure for the predator. SIAM Journal on Applied Mathematics 69 (2) : 596-620. ScholarBank@NUS Repository. https://doi.org/10.1137/070684173
dc.identifier.issn00361399
dc.identifier.urihttp://scholarbank.nus.edu.sg/handle/10635/104001
dc.description.abstractIn this paper, we propose a diffusive prey-predator model with stage structure for the predator. We first analyze the stability of the nonnegative steady states for the reduced ODE system and then study the same question for the corresponding reaction-diffusion system with homogeneous Neumann boundary conditions. We find that a Hopf bifurcation occurs in the ODE system, but no Turing pattern happens in the reaction-diffusion system. However, when a natural cross diffusion term is included in the model, we can prove the emergence of stationary patterns (i.e., nonconstant positive stationary solutions) for this system; moreover, these stationary patterns do not exist in the considered parameter regime when there is no cross diffusion. © 2008 Society for Industrial and Applied Mathematics.
dc.description.urihttp://libproxy1.nus.edu.sg/login?url=http://dx.doi.org/10.1137/070684173
dc.sourceScopus
dc.subjectCross diffusion
dc.subjectPredator-prey model
dc.subjectStability
dc.subjectStage structure
dc.subjectTuring pattern
dc.typeArticle
dc.contributor.departmentMATHEMATICS
dc.description.doi10.1137/070684173
dc.description.sourcetitleSIAM Journal on Applied Mathematics
dc.description.volume69
dc.description.issue2
dc.description.page596-620
dc.description.codenSMJMA
dc.identifier.isiut000263103000015
Appears in Collections:Staff Publications

Show simple item record
Files in This Item:
There are no files associated with this item.

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.