Please use this identifier to cite or link to this item:
https://scholarbank.nus.edu.sg/handle/10635/103954
DC Field | Value | |
---|---|---|
dc.title | Positive solutions for nonlinear singular boundary value problems | |
dc.contributor.author | Agarwal, R.P. | |
dc.contributor.author | Wong, F.-H. | |
dc.contributor.author | Lian, W.-C. | |
dc.date.accessioned | 2014-10-28T02:43:31Z | |
dc.date.available | 2014-10-28T02:43:31Z | |
dc.date.issued | 1999-03 | |
dc.identifier.citation | Agarwal, R.P.,Wong, F.-H.,Lian, W.-C. (1999-03). Positive solutions for nonlinear singular boundary value problems. Applied Mathematics Letters 12 (2) : 115-120. ScholarBank@NUS Repository. | |
dc.identifier.issn | 08939659 | |
dc.identifier.uri | http://scholarbank.nus.edu.sg/handle/10635/103954 | |
dc.description.abstract | Under suitable conditions on f(t, u), it is shown that the two-point boundary value problem u″(t) + λf(t, u(t)) = 0, in (0, 1), u(0) = u(1) = 0, has at least one positive solution for λ in a compatible interval. © 1998 Elsevier Science Ltd. All rights reserved. | |
dc.source | Scopus | |
dc.subject | Boundary value problem | |
dc.subject | Existence result | |
dc.subject | Positive solution | |
dc.subject | Singular equation | |
dc.type | Article | |
dc.contributor.department | MATHEMATICS | |
dc.description.sourcetitle | Applied Mathematics Letters | |
dc.description.volume | 12 | |
dc.description.issue | 2 | |
dc.description.page | 115-120 | |
dc.description.coden | AMLEE | |
dc.identifier.isiut | NOT_IN_WOS | |
Appears in Collections: | Staff Publications |
Show simple item record
Files in This Item:
There are no files associated with this item.
Google ScholarTM
Check
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.