Please use this identifier to cite or link to this item: https://doi.org/10.1007/s10623-008-9174-x
DC FieldValue
dc.titlePeriodic multisequences with large error linear complexity
dc.contributor.authorNiederreiter, H.
dc.contributor.authorVenkateswarlu, A.
dc.date.accessioned2014-10-28T02:43:06Z
dc.date.available2014-10-28T02:43:06Z
dc.date.issued2008-12
dc.identifier.citationNiederreiter, H., Venkateswarlu, A. (2008-12). Periodic multisequences with large error linear complexity. Designs, Codes, and Cryptography 49 (1-3) : 33-45. ScholarBank@NUS Repository. https://doi.org/10.1007/s10623-008-9174-x
dc.identifier.issn09251022
dc.identifier.urihttp://scholarbank.nus.edu.sg/handle/10635/103922
dc.description.abstractGeneralizing the theory of k-error linear complexity for single sequences over a finite field, Meidl et al. (J. Complexity 23(2), 169-192 (2007)) introduced three possibilities of defining error linear complexity measures for multisequences. A good keystream sequence must possess a large linear complexity and a large k-error linear complexity simultaneously for suitable values of k. In this direction several results on the existence, and lower bounds on the number, of single sequences with large k-error linear complexity were proved in Meidl and Niederreiter (Appl. Algebra Eng. Commun. Comput. 14(4), 273-286 (2003)), Niederreiter (IEEE Trans. Inform. Theory 49(2), 501-505 (2003)) and Niederreiter and Shparlinski (In: Paterson (ed.) 9th IMA International Conference on Cryptography and Coding (2003)). In this paper we discuss analogous results for the case of multisequences. We also present improved bounds on the error linear complexity and on the number of sequences satisfying such bounds for the case of single sequences. © 2008 Springer Science+Business Media, LLC.
dc.description.urihttp://libproxy1.nus.edu.sg/login?url=http://dx.doi.org/10.1007/s10623-008-9174-x
dc.sourceScopus
dc.subjectBerlekamp-Massey algorithm
dc.subjectError linear complexity
dc.subjectJoint linear complexity
dc.subjectMultisequences
dc.subjectStream ciphers
dc.typeArticle
dc.contributor.departmentMATHEMATICS
dc.description.doi10.1007/s10623-008-9174-x
dc.description.sourcetitleDesigns, Codes, and Cryptography
dc.description.volume49
dc.description.issue1-3
dc.description.page33-45
dc.description.codenDCCRE
dc.identifier.isiut000258933600004
Appears in Collections:Staff Publications

Show simple item record
Files in This Item:
There are no files associated with this item.

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.