Please use this identifier to cite or link to this item: https://doi.org/10.4171/JEMS/243
Title: Parapuzzle of the multibrot set and typical dynamics of unimodal maps
Authors: Avila, A.
Lyubich, M.
Shen, W. 
Issue Date: 2011
Citation: Avila, A., Lyubich, M., Shen, W. (2011). Parapuzzle of the multibrot set and typical dynamics of unimodal maps. Journal of the European Mathematical Society 13 (1) : 27-56. ScholarBank@NUS Repository. https://doi.org/10.4171/JEMS/243
Abstract: We study the parameter space of unicritical polynomials fc: z zd + c. For complex parameters, we prove that for Lebesgue almost every c, the map fc is either hyperbolic or infinitely renormalizable. For real parameters, we prove that for Lebesgue almost every c, the map fc is either hyperbolic, or Collet-Eckmann, or infinitely renormalizable. These results are based on controlling the spacing between consecutive elements in the "principal nest" of parapuzzle pieces. © European Mathematical Society 2011.
Source Title: Journal of the European Mathematical Society
URI: http://scholarbank.nus.edu.sg/handle/10635/103915
ISSN: 14359855
DOI: 10.4171/JEMS/243
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.