Please use this identifier to cite or link to this item:
https://doi.org/10.1007/BF01787731
DC Field | Value | |
---|---|---|
dc.title | Packing two graphs of order n having total size at most 2 n - 2 | |
dc.contributor.author | Teo, S.K. | |
dc.contributor.author | Yap, H.P. | |
dc.date.accessioned | 2014-10-28T02:42:59Z | |
dc.date.available | 2014-10-28T02:42:59Z | |
dc.date.issued | 1990-06 | |
dc.identifier.citation | Teo, S.K., Yap, H.P. (1990-06). Packing two graphs of order n having total size at most 2 n - 2. Graphs and Combinatorics 6 (2) : 197-205. ScholarBank@NUS Repository. https://doi.org/10.1007/BF01787731 | |
dc.identifier.issn | 09110119 | |
dc.identifier.uri | http://scholarbank.nus.edu.sg/handle/10635/103909 | |
dc.description.abstract | Two graphs G and H of the same order are packable if G can be embedded in the complement {Mathematical expression} of H. In this paper we give a complete characterization of two graphs of order n having total size at most 2 n - 2 which are packable. This result extends an earlier result of B. Bollobás and S.E. Eldridge. © 1990 Springer-Verlag. | |
dc.description.uri | http://libproxy1.nus.edu.sg/login?url=http://dx.doi.org/10.1007/BF01787731 | |
dc.source | Scopus | |
dc.type | Article | |
dc.contributor.department | MATHEMATICS | |
dc.description.doi | 10.1007/BF01787731 | |
dc.description.sourcetitle | Graphs and Combinatorics | |
dc.description.volume | 6 | |
dc.description.issue | 2 | |
dc.description.page | 197-205 | |
dc.identifier.isiut | A1990EA78200010 | |
Appears in Collections: | Staff Publications |
Show simple item record
Files in This Item:
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.