Please use this identifier to cite or link to this item: https://doi.org/10.1016/S0898-1221(02)00190-6
DC FieldValue
dc.titleOscillation of solutions of systems of neutral type partial functional differential equations
dc.contributor.authorAgarwal, R.P.
dc.contributor.authorMeng, F.W.
dc.contributor.authorLi, W.N.
dc.date.accessioned2014-10-28T02:42:47Z
dc.date.available2014-10-28T02:42:47Z
dc.date.issued2002-09
dc.identifier.citationAgarwal, R.P., Meng, F.W., Li, W.N. (2002-09). Oscillation of solutions of systems of neutral type partial functional differential equations. Computers and Mathematics with Applications 44 (5-6) : 777-786. ScholarBank@NUS Repository. https://doi.org/10.1016/S0898-1221(02)00190-6
dc.identifier.issn08981221
dc.identifier.urihttp://scholarbank.nus.edu.sg/handle/10635/103895
dc.description.abstractSufficient conditions are established for the oscillation of solutions of systems of neutral type partial functional differential equations of the form ∂/∂t (p(t) ∂/∂t (ui(x, t) + ∑r=1 d λr(t)ui(x, t - τr(t)))) = ai(t)Δui(x, t) + ∑j=1 m∑k=1 s aijk(t)Δuj (x, ρk(t)) - qi(x, t)ui(x, t) - ∑j=1 m∑h=1 l qijh(x, t)uj(x, σh(t)), (x, t) ∈ Ω × [0, ∞) ≡ G, i = 1, 2, ..., m, where Ω is a bounced domain in ℝn with a piecewise smooth boundary ∂Ω, and Δ is the Laplacian in Euclidean n-space ℝn. The obtained results are illustrated by some interesting examples.
dc.description.urihttp://libproxy1.nus.edu.sg/login?url=http://dx.doi.org/10.1016/S0898-1221(02)00190-6
dc.sourceScopus
dc.subjectFunctional
dc.subjectNeutral
dc.subjectOscillation
dc.subjectSystem of differential equations
dc.typeArticle
dc.contributor.departmentMATHEMATICS
dc.description.doi10.1016/S0898-1221(02)00190-6
dc.description.sourcetitleComputers and Mathematics with Applications
dc.description.volume44
dc.description.issue5-6
dc.description.page777-786
dc.description.codenCMAPD
dc.identifier.isiut000177691200020
Appears in Collections:Staff Publications

Show simple item record
Files in This Item:
There are no files associated with this item.

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.