Please use this identifier to cite or link to this item: https://doi.org/10.1023/A:1024715527805
DC FieldValue
dc.titleOn the algebraic structure of quasi-cyclic codes II: Chain rings
dc.contributor.authorLing, S.
dc.contributor.authorSolé, P.
dc.date.accessioned2014-10-28T02:41:14Z
dc.date.available2014-10-28T02:41:14Z
dc.date.issued2003-08
dc.identifier.citationLing, S., Solé, P. (2003-08). On the algebraic structure of quasi-cyclic codes II: Chain rings. Designs, Codes, and Cryptography 30 (1) : 113-130. ScholarBank@NUS Repository. https://doi.org/10.1023/A:1024715527805
dc.identifier.issn09251022
dc.identifier.urihttp://scholarbank.nus.edu.sg/handle/10635/103767
dc.description.abstractThe ring decomposition technique of part I is extended to the case when the factors in the direct product decomposition are no longer fields but arbitrary chain rings. This includes not only the case of quasi-cyclic codes over rings but also the case of quasi-cyclic codes over fields whose co-index is no longer prime to the characteristic of the field. A new quaternary construction of the Leech lattice is derived.
dc.description.urihttp://libproxy1.nus.edu.sg/login?url=http://dx.doi.org/10.1023/A:1024715527805
dc.sourceScopus
dc.subject(a + x | b + x | a + b + x) construction
dc.subject(u + v + w | 2u + v | u) construction
dc.subjectChain rings
dc.subjectChinese Remainder Theorem
dc.subjectDFT
dc.subjectQuasi-cyclic codes
dc.subjectSelf-dual codes
dc.typeArticle
dc.contributor.departmentMATHEMATICS
dc.description.doi10.1023/A:1024715527805
dc.description.sourcetitleDesigns, Codes, and Cryptography
dc.description.volume30
dc.description.issue1
dc.description.page113-130
dc.description.codenDCCRE
dc.identifier.isiut000184188400008
Appears in Collections:Staff Publications

Show simple item record
Files in This Item:
There are no files associated with this item.

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.