Please use this identifier to cite or link to this item:
https://doi.org/10.1080/14689367.2013.806733
DC Field | Value | |
---|---|---|
dc.title | On stochastic stability of expanding circle maps with neutral fixed points | |
dc.contributor.author | Shen, W. | |
dc.contributor.author | Van Strien, S. | |
dc.date.accessioned | 2014-10-28T02:41:09Z | |
dc.date.available | 2014-10-28T02:41:09Z | |
dc.date.issued | 2013-09-01 | |
dc.identifier.citation | Shen, W., Van Strien, S. (2013-09-01). On stochastic stability of expanding circle maps with neutral fixed points. Dynamical Systems 28 (3) : 423-452. ScholarBank@NUS Repository. https://doi.org/10.1080/14689367.2013.806733 | |
dc.identifier.issn | 14689367 | |
dc.identifier.uri | http://scholarbank.nus.edu.sg/handle/10635/103759 | |
dc.description.abstract | It is well known that the Manneville-Pomeau map with a parabolic fixed point of the form is stochastically stable for ≥ 1 and the limiting measure is the Dirac measure at the fixed point. In this paper, we show that if ∈ (0, 1), then it is also stochastically stable. Indeed, the stationary measure of the random map converges strongly to the absolutely continuous invariant measure for the deterministic system as the noise tends to zero. © 2013 Copyright Taylor and Francis Group, LLC. | |
dc.description.uri | http://libproxy1.nus.edu.sg/login?url=http://dx.doi.org/10.1080/14689367.2013.806733 | |
dc.source | Scopus | |
dc.subject | intermittency | |
dc.subject | Manneville - Pomeau map | |
dc.subject | stochastic stability | |
dc.type | Article | |
dc.contributor.department | MATHEMATICS | |
dc.description.doi | 10.1080/14689367.2013.806733 | |
dc.description.sourcetitle | Dynamical Systems | |
dc.description.volume | 28 | |
dc.description.issue | 3 | |
dc.description.page | 423-452 | |
dc.description.coden | DSYYA | |
dc.identifier.isiut | 000324740500007 | |
Appears in Collections: | Staff Publications |
Show simple item record
Files in This Item:
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.