Please use this identifier to cite or link to this item: https://doi.org/10.1080/14689367.2013.806733
DC FieldValue
dc.titleOn stochastic stability of expanding circle maps with neutral fixed points
dc.contributor.authorShen, W.
dc.contributor.authorVan Strien, S.
dc.date.accessioned2014-10-28T02:41:09Z
dc.date.available2014-10-28T02:41:09Z
dc.date.issued2013-09-01
dc.identifier.citationShen, W., Van Strien, S. (2013-09-01). On stochastic stability of expanding circle maps with neutral fixed points. Dynamical Systems 28 (3) : 423-452. ScholarBank@NUS Repository. https://doi.org/10.1080/14689367.2013.806733
dc.identifier.issn14689367
dc.identifier.urihttp://scholarbank.nus.edu.sg/handle/10635/103759
dc.description.abstractIt is well known that the Manneville-Pomeau map with a parabolic fixed point of the form is stochastically stable for ≥ 1 and the limiting measure is the Dirac measure at the fixed point. In this paper, we show that if ∈ (0, 1), then it is also stochastically stable. Indeed, the stationary measure of the random map converges strongly to the absolutely continuous invariant measure for the deterministic system as the noise tends to zero. © 2013 Copyright Taylor and Francis Group, LLC.
dc.description.urihttp://libproxy1.nus.edu.sg/login?url=http://dx.doi.org/10.1080/14689367.2013.806733
dc.sourceScopus
dc.subjectintermittency
dc.subjectManneville - Pomeau map
dc.subjectstochastic stability
dc.typeArticle
dc.contributor.departmentMATHEMATICS
dc.description.doi10.1080/14689367.2013.806733
dc.description.sourcetitleDynamical Systems
dc.description.volume28
dc.description.issue3
dc.description.page423-452
dc.description.codenDSYYA
dc.identifier.isiut000324740500007
Appears in Collections:Staff Publications

Show simple item record
Files in This Item:
There are no files associated with this item.

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.