Please use this identifier to cite or link to this item:
https://scholarbank.nus.edu.sg/handle/10635/103632
DC Field | Value | |
---|---|---|
dc.title | Nonuniform cascade algorithms | |
dc.contributor.author | Goodman, T.N.T. | |
dc.contributor.author | Lee, S.L. | |
dc.date.accessioned | 2014-10-28T02:39:35Z | |
dc.date.available | 2014-10-28T02:39:35Z | |
dc.date.issued | 2000-07-01 | |
dc.identifier.citation | Goodman, T.N.T.,Lee, S.L. (2000-07-01). Nonuniform cascade algorithms. Journal of Computational and Applied Mathematics 119 (1-2) : 223-234. ScholarBank@NUS Repository. | |
dc.identifier.issn | 03770427 | |
dc.identifier.uri | http://scholarbank.nus.edu.sg/handle/10635/103632 | |
dc.description.abstract | For a sequence of bounded linear operators Hk, k=0,1,..., on a Banach space S, the algorithm φk,n=Hkφk+1,n-1 generates a family of sequences (φk,n)n=0 ∞,k=0,1,..., from an initial family of vectors φk,0∈S,k=0,1,.... We study the convergence of φk,n as n→∞, and give an application on the convergence of cascade algorithms for nonuniform splines when S is the space of all sequences φ(φi)i∈Z with norm ∥φ∥supi∈Z∥φi∥ | |
dc.source | Scopus | |
dc.subject | 41A15 | |
dc.subject | 41A30 | |
dc.subject | 42C05 | |
dc.subject | 42C15 | |
dc.subject | Banach space | |
dc.subject | Cascade algorithm | |
dc.subject | Operator refinement equation | |
dc.type | Article | |
dc.contributor.department | MATHEMATICS | |
dc.description.sourcetitle | Journal of Computational and Applied Mathematics | |
dc.description.volume | 119 | |
dc.description.issue | 1-2 | |
dc.description.page | 223-234 | |
dc.identifier.isiut | NOT_IN_WOS | |
Appears in Collections: | Staff Publications |
Show simple item record
Files in This Item:
There are no files associated with this item.
Google ScholarTM
Check
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.