Please use this identifier to cite or link to this item: https://doi.org/10.1090/S0002-9947-03-03365-8
DC FieldValue
dc.titleNonexistence of abelian difference sets: Lander's conjecture for prime power orders
dc.contributor.authorLeung, K.H.
dc.contributor.authorMa, S.L.
dc.contributor.authorSchmidt, B.
dc.date.accessioned2014-10-28T02:39:19Z
dc.date.available2014-10-28T02:39:19Z
dc.date.issued2004-11
dc.identifier.citationLeung, K.H., Ma, S.L., Schmidt, B. (2004-11). Nonexistence of abelian difference sets: Lander's conjecture for prime power orders. Transactions of the American Mathematical Society 356 (11) : 4343-4358. ScholarBank@NUS Repository. https://doi.org/10.1090/S0002-9947-03-03365-8
dc.identifier.issn00029947
dc.identifier.urihttp://scholarbank.nus.edu.sg/handle/10635/103613
dc.description.abstractIn 1963 Ryser conjectured that there are no circulant Hadamard matrices of order > 4 and no cyclic difference sets whose order is not coprime to the group order. These conjectures are special cases of Lander's conjecture which asserts that there is no abelian group with a cyclic Sylow p-subgroup containing a difference set of order divisible by p. We verify Lander's conjecture for all difference sets whose order is a power of a prime greater than 3.
dc.description.urihttp://libproxy1.nus.edu.sg/login?url=http://dx.doi.org/10.1090/S0002-9947-03-03365-8
dc.sourceScopus
dc.subjectDifference set
dc.subjectField descent
dc.subjectLander's conjecture
dc.subjectRyser's conjecture
dc.typeArticle
dc.contributor.departmentMATHEMATICS
dc.description.doi10.1090/S0002-9947-03-03365-8
dc.description.sourcetitleTransactions of the American Mathematical Society
dc.description.volume356
dc.description.issue11
dc.description.page4343-4358
dc.identifier.isiut000222387600005
Appears in Collections:Staff Publications

Show simple item record
Files in This Item:
There are no files associated with this item.

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.