Please use this identifier to cite or link to this item:
https://doi.org/10.1006/ffta.2000.0307
DC Field | Value | |
---|---|---|
dc.title | New partial difference sets in ℤt p 2 and a related problem about Galois rings | |
dc.contributor.author | Hou, X.-D. | |
dc.contributor.author | Leung, K.H. | |
dc.contributor.author | Xiang, Q. | |
dc.date.accessioned | 2014-10-28T02:39:11Z | |
dc.date.available | 2014-10-28T02:39:11Z | |
dc.date.issued | 2001-01 | |
dc.identifier.citation | Hou, X.-D., Leung, K.H., Xiang, Q. (2001-01). New partial difference sets in ℤt p 2 and a related problem about Galois rings. Finite Fields and their Applications 7 (1) : 165-188. ScholarBank@NUS Repository. https://doi.org/10.1006/ffta.2000.0307 | |
dc.identifier.issn | 10715797 | |
dc.identifier.uri | http://scholarbank.nus.edu.sg/handle/10635/103603 | |
dc.description.abstract | We generalize a construction of partial difference sets (PDS) by Chen, Ray-Chaudhuri, and Xiang through a study of the Teichmüller sets of the Galois rings. Let R=GR(p2, t) be the Galois ring of characteristic p2 and rank t with Teichmüller set T and let π:R→R/pR be the natural homomorphism. We give a construction of PDS in R with the parameters ν=p2t, k=r(pt-1), λ=pt+r2-3r, μ=r2-r, where r=lpt-s(p, t), 1≤l≤ps(p, t), and s(p, t) is the largest dimension of a GF(p)-subspace W⊂R/pR such that π-1(W)∩T generates a subgroup of R of rank | |
dc.description.uri | http://libproxy1.nus.edu.sg/login?url=http://dx.doi.org/10.1006/ffta.2000.0307 | |
dc.source | Scopus | |
dc.subject | Finite field | |
dc.subject | Galois ring | |
dc.subject | Partial difference set | |
dc.subject | Teichmüller set | |
dc.subject | The Cauchy-Davenport theorem | |
dc.subject | The Dyson e-transform | |
dc.type | Article | |
dc.contributor.department | MATHEMATICS | |
dc.description.doi | 10.1006/ffta.2000.0307 | |
dc.description.sourcetitle | Finite Fields and their Applications | |
dc.description.volume | 7 | |
dc.description.issue | 1 | |
dc.description.page | 165-188 | |
dc.identifier.isiut | 000166289800011 | |
Appears in Collections: | Staff Publications |
Show simple item record
Files in This Item:
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.