Please use this identifier to cite or link to this item: https://doi.org/10.1006/ffta.2000.0307
DC FieldValue
dc.titleNew partial difference sets in ℤt p 2 and a related problem about Galois rings
dc.contributor.authorHou, X.-D.
dc.contributor.authorLeung, K.H.
dc.contributor.authorXiang, Q.
dc.date.accessioned2014-10-28T02:39:11Z
dc.date.available2014-10-28T02:39:11Z
dc.date.issued2001-01
dc.identifier.citationHou, X.-D., Leung, K.H., Xiang, Q. (2001-01). New partial difference sets in ℤt p 2 and a related problem about Galois rings. Finite Fields and their Applications 7 (1) : 165-188. ScholarBank@NUS Repository. https://doi.org/10.1006/ffta.2000.0307
dc.identifier.issn10715797
dc.identifier.urihttp://scholarbank.nus.edu.sg/handle/10635/103603
dc.description.abstractWe generalize a construction of partial difference sets (PDS) by Chen, Ray-Chaudhuri, and Xiang through a study of the Teichmüller sets of the Galois rings. Let R=GR(p2, t) be the Galois ring of characteristic p2 and rank t with Teichmüller set T and let π:R→R/pR be the natural homomorphism. We give a construction of PDS in R with the parameters ν=p2t, k=r(pt-1), λ=pt+r2-3r, μ=r2-r, where r=lpt-s(p, t), 1≤l≤ps(p, t), and s(p, t) is the largest dimension of a GF(p)-subspace W⊂R/pR such that π-1(W)∩T generates a subgroup of R of rank
dc.description.urihttp://libproxy1.nus.edu.sg/login?url=http://dx.doi.org/10.1006/ffta.2000.0307
dc.sourceScopus
dc.subjectFinite field
dc.subjectGalois ring
dc.subjectPartial difference set
dc.subjectTeichmüller set
dc.subjectThe Cauchy-Davenport theorem
dc.subjectThe Dyson e-transform
dc.typeArticle
dc.contributor.departmentMATHEMATICS
dc.description.doi10.1006/ffta.2000.0307
dc.description.sourcetitleFinite Fields and their Applications
dc.description.volume7
dc.description.issue1
dc.description.page165-188
dc.identifier.isiut000166289800011
Appears in Collections:Staff Publications

Show simple item record
Files in This Item:
There are no files associated with this item.

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.