Please use this identifier to cite or link to this item: https://doi.org/10.4007/annals.2012.175.1.2
DC FieldValue
dc.titleMultiplicity one theorems: The Archimedean case
dc.contributor.authorSun, B.
dc.contributor.authorZhu, C.-B.
dc.date.accessioned2014-10-28T02:39:02Z
dc.date.available2014-10-28T02:39:02Z
dc.date.issued2012-01
dc.identifier.citationSun, B., Zhu, C.-B. (2012-01). Multiplicity one theorems: The Archimedean case. Annals of Mathematics 175 (1) : 23-44. ScholarBank@NUS Repository. https://doi.org/10.4007/annals.2012.175.1.2
dc.identifier.issn0003486X
dc.identifier.urihttp://scholarbank.nus.edu.sg/handle/10635/103588
dc.description.abstractLet G be one of the classical Lie groups GL n+1(R), GL n+1(C), U (p, q + 1), O(p, q + 1), O n+1(C), SO(p, q + 1), SO n+1(C), and let G' be re-spectively the subgroup GL n(R), GL n(C), U(p, q), O(p, q), O n(C), SO(p, q), SO n(C), embedded in G in the standard way. We show that every irreducible Casselman-Wallach representation of G' occurs with multiplicity at most one in every irreducible Casselman-Wallach representation of G. Similar results are proved for the Jacobi groups GL n(R)⋉H 2n+1(R), GL n(C)⋉ H 2n+1(C), U(p, q)⋉H 2p+2q+1(R), Sp 2n(R)⋉H 2n+1(R), Sp 2n(C)⋉H 2n+1(C), with their respective subgroups GL n(R), GL n(C), U(p, q), Sp 2n(R), and Sp 2n(C).
dc.description.urihttp://libproxy1.nus.edu.sg/login?url=http://dx.doi.org/10.4007/annals.2012.175.1.2
dc.sourceScopus
dc.typeArticle
dc.contributor.departmentMATHEMATICS
dc.description.doi10.4007/annals.2012.175.1.2
dc.description.sourcetitleAnnals of Mathematics
dc.description.volume175
dc.description.issue1
dc.description.page23-44
dc.identifier.isiut000300012200002
Appears in Collections:Staff Publications

Show simple item record
Files in This Item:
There are no files associated with this item.

SCOPUSTM   
Citations

80
checked on Nov 23, 2022

WEB OF SCIENCETM
Citations

78
checked on Nov 23, 2022

Page view(s)

142
checked on Nov 24, 2022

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.