Please use this identifier to cite or link to this item: https://doi.org/10.1016/S0895-7177(98)00097-1
DC FieldValue
dc.titleMultiple positive solutions of two-point right focal boundary value problems
dc.contributor.authorWong, P.J.Y.
dc.contributor.authorAgarwal, R.P.
dc.date.accessioned2014-10-28T02:38:57Z
dc.date.available2014-10-28T02:38:57Z
dc.date.issued1998-08
dc.identifier.citationWong, P.J.Y., Agarwal, R.P. (1998-08). Multiple positive solutions of two-point right focal boundary value problems. Mathematical and Computer Modelling 28 (3) : 41-49. ScholarBank@NUS Repository. https://doi.org/10.1016/S0895-7177(98)00097-1
dc.identifier.issn08957177
dc.identifier.urihttp://scholarbank.nus.edu.sg/handle/10635/103579
dc.description.abstractWe consider the following boundary value problem: (-1)(n-p)y((n))(t) = u(t)f(y(t)), n ≤ 2, t ε (0,1), y((i))(0) = 0, 0 ≤ i ≤ p - 1, y((i))(1) = 0, p ≤ i ≤ n - 1, where 1 ≤ p ≤ n - 1 is fixed. Using a fixed point theorem for operators on a cone, we offer sufficient conditions for the existence of multiple (at least three) positive solutions of the boundary value problem. An example is also included to dwell upon the importance of the result obtained.
dc.description.urihttp://libproxy1.nus.edu.sg/login?url=http://dx.doi.org/10.1016/S0895-7177(98)00097-1
dc.sourceScopus
dc.subjectBoundary value problems
dc.subjectPositive solutions
dc.typeArticle
dc.contributor.departmentMATHEMATICS
dc.description.doi10.1016/S0895-7177(98)00097-1
dc.description.sourcetitleMathematical and Computer Modelling
dc.description.volume28
dc.description.issue3
dc.description.page41-49
dc.description.codenMCMOE
dc.identifier.isiut000075717200005
Appears in Collections:Staff Publications

Show simple item record
Files in This Item:
There are no files associated with this item.

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.