Please use this identifier to cite or link to this item: https://doi.org/10.1007/BF01788678
DC FieldValue
dc.titleLinking (n - 2)-dimensional panels in n-space II: (n - 2, 2)-frameworks and body and hinge structures
dc.contributor.authorTay, T.-S.
dc.date.accessioned2014-10-28T02:38:01Z
dc.date.available2014-10-28T02:38:01Z
dc.date.issued1989-12
dc.identifier.citationTay, T.-S. (1989-12). Linking (n - 2)-dimensional panels in n-space II: (n - 2, 2)-frameworks and body and hinge structures. Graphs and Combinatorics 5 (1) : 245-273. ScholarBank@NUS Repository. https://doi.org/10.1007/BF01788678
dc.identifier.issn09110119
dc.identifier.urihttp://scholarbank.nus.edu.sg/handle/10635/103504
dc.description.abstractAn (n - 1, 2)-framework in n-space is a structure consisting of a finite set of (n - 2)-dimensional panels and a set of rigid bars each joining a pair of panels using ball joints. A body and hinge (or (n + 1, n - 1)-) framework in n-space consists of a finite set of n-dimensional bodies articulated by a set of (n - 2)-dimensional hinges, i.e., joints in 2-space, line hinges in 3-space, plane-hinges in 4-space, etc. In this paper we characterize the graphs of all rigid (n - 1, 2)- and (n + 1, n - 1)-frameworks in n-space. Rigidity here is statical rigidity or equivalently infinitesimal rigidity. © 1989 Springer-Verlag.
dc.description.urihttp://libproxy1.nus.edu.sg/login?url=http://dx.doi.org/10.1007/BF01788678
dc.sourceScopus
dc.typeArticle
dc.contributor.departmentMATHEMATICS
dc.description.doi10.1007/BF01788678
dc.description.sourcetitleGraphs and Combinatorics
dc.description.volume5
dc.description.issue1
dc.description.page245-273
dc.identifier.isiutA1989CA91700007
Appears in Collections:Staff Publications

Show simple item record
Files in This Item:
There are no files associated with this item.

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.