Please use this identifier to cite or link to this item:
https://doi.org/10.1007/BF01788678
DC Field | Value | |
---|---|---|
dc.title | Linking (n - 2)-dimensional panels in n-space II: (n - 2, 2)-frameworks and body and hinge structures | |
dc.contributor.author | Tay, T.-S. | |
dc.date.accessioned | 2014-10-28T02:38:01Z | |
dc.date.available | 2014-10-28T02:38:01Z | |
dc.date.issued | 1989-12 | |
dc.identifier.citation | Tay, T.-S. (1989-12). Linking (n - 2)-dimensional panels in n-space II: (n - 2, 2)-frameworks and body and hinge structures. Graphs and Combinatorics 5 (1) : 245-273. ScholarBank@NUS Repository. https://doi.org/10.1007/BF01788678 | |
dc.identifier.issn | 09110119 | |
dc.identifier.uri | http://scholarbank.nus.edu.sg/handle/10635/103504 | |
dc.description.abstract | An (n - 1, 2)-framework in n-space is a structure consisting of a finite set of (n - 2)-dimensional panels and a set of rigid bars each joining a pair of panels using ball joints. A body and hinge (or (n + 1, n - 1)-) framework in n-space consists of a finite set of n-dimensional bodies articulated by a set of (n - 2)-dimensional hinges, i.e., joints in 2-space, line hinges in 3-space, plane-hinges in 4-space, etc. In this paper we characterize the graphs of all rigid (n - 1, 2)- and (n + 1, n - 1)-frameworks in n-space. Rigidity here is statical rigidity or equivalently infinitesimal rigidity. © 1989 Springer-Verlag. | |
dc.description.uri | http://libproxy1.nus.edu.sg/login?url=http://dx.doi.org/10.1007/BF01788678 | |
dc.source | Scopus | |
dc.type | Article | |
dc.contributor.department | MATHEMATICS | |
dc.description.doi | 10.1007/BF01788678 | |
dc.description.sourcetitle | Graphs and Combinatorics | |
dc.description.volume | 5 | |
dc.description.issue | 1 | |
dc.description.page | 245-273 | |
dc.identifier.isiut | A1989CA91700007 | |
Appears in Collections: | Staff Publications |
Show simple item record
Files in This Item:
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.