Please use this identifier to cite or link to this item: https://doi.org/10.1007/BF01787636
DC FieldValue
dc.titleLinking (n - 2)-dimensional panels in n-space I: (k - 1, k)-graphs and (k - 1, k)-frames
dc.contributor.authorTay, T.-S.
dc.date.accessioned2014-10-28T02:38:00Z
dc.date.available2014-10-28T02:38:00Z
dc.date.issued1991-09
dc.identifier.citationTay, T.-S. (1991-09). Linking (n - 2)-dimensional panels in n-space I: (k - 1, k)-graphs and (k - 1, k)-frames. Graphs and Combinatorics 7 (3) : 289-304. ScholarBank@NUS Repository. https://doi.org/10.1007/BF01787636
dc.identifier.issn09110119
dc.identifier.urihttp://scholarbank.nus.edu.sg/handle/10635/103503
dc.description.abstractA (k - 1, k)-graph is a multi-graph satisfying e′ ≤ (k - 1)v′ - k for every non-empty subset of e′ edges on v′ vertices, with equality when e′ = |E(G)|. A (k - 1, k)-frame is a structure generalizing an (n - 2, 2)-framework in n-space, a structure consisting of a set of (n - 2)-dimensional bodies in n-space and a set of rigid bars each joining a pair of bodies using ball joints. We prove that a graph is the graph of a minimally rigid (with respect to edges) (k - 1, k)-frame if and only if it is a (k - 1, k)-graph. Rigidity here means infinitesimal rigidity or equivalently statical rigidity. © 1991 Springer-Verlag.
dc.description.urihttp://libproxy1.nus.edu.sg/login?url=http://dx.doi.org/10.1007/BF01787636
dc.sourceScopus
dc.typeArticle
dc.contributor.departmentMATHEMATICS
dc.description.doi10.1007/BF01787636
dc.description.sourcetitleGraphs and Combinatorics
dc.description.volume7
dc.description.issue3
dc.description.page289-304
dc.identifier.isiutA1991GJ33000009
Appears in Collections:Staff Publications

Show simple item record
Files in This Item:
There are no files associated with this item.

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.