Please use this identifier to cite or link to this item:
https://doi.org/10.1007/BF01787636
DC Field | Value | |
---|---|---|
dc.title | Linking (n - 2)-dimensional panels in n-space I: (k - 1, k)-graphs and (k - 1, k)-frames | |
dc.contributor.author | Tay, T.-S. | |
dc.date.accessioned | 2014-10-28T02:38:00Z | |
dc.date.available | 2014-10-28T02:38:00Z | |
dc.date.issued | 1991-09 | |
dc.identifier.citation | Tay, T.-S. (1991-09). Linking (n - 2)-dimensional panels in n-space I: (k - 1, k)-graphs and (k - 1, k)-frames. Graphs and Combinatorics 7 (3) : 289-304. ScholarBank@NUS Repository. https://doi.org/10.1007/BF01787636 | |
dc.identifier.issn | 09110119 | |
dc.identifier.uri | http://scholarbank.nus.edu.sg/handle/10635/103503 | |
dc.description.abstract | A (k - 1, k)-graph is a multi-graph satisfying e′ ≤ (k - 1)v′ - k for every non-empty subset of e′ edges on v′ vertices, with equality when e′ = |E(G)|. A (k - 1, k)-frame is a structure generalizing an (n - 2, 2)-framework in n-space, a structure consisting of a set of (n - 2)-dimensional bodies in n-space and a set of rigid bars each joining a pair of bodies using ball joints. We prove that a graph is the graph of a minimally rigid (with respect to edges) (k - 1, k)-frame if and only if it is a (k - 1, k)-graph. Rigidity here means infinitesimal rigidity or equivalently statical rigidity. © 1991 Springer-Verlag. | |
dc.description.uri | http://libproxy1.nus.edu.sg/login?url=http://dx.doi.org/10.1007/BF01787636 | |
dc.source | Scopus | |
dc.type | Article | |
dc.contributor.department | MATHEMATICS | |
dc.description.doi | 10.1007/BF01787636 | |
dc.description.sourcetitle | Graphs and Combinatorics | |
dc.description.volume | 7 | |
dc.description.issue | 3 | |
dc.description.page | 289-304 | |
dc.identifier.isiut | A1991GJ33000009 | |
Appears in Collections: | Staff Publications |
Show simple item record
Files in This Item:
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.