Please use this identifier to cite or link to this item: https://doi.org/10.1214/aop/1065725185
DC FieldValue
dc.titleLarge deviations and law of the iterated logarithm for partial sums normalized by the largest absolute observation
dc.contributor.authorHorváth, L.
dc.contributor.authorShao, Q.-M.
dc.date.accessioned2014-10-28T02:37:47Z
dc.date.available2014-10-28T02:37:47Z
dc.date.issued1996-07
dc.identifier.citationHorváth, L., Shao, Q.-M. (1996-07). Large deviations and law of the iterated logarithm for partial sums normalized by the largest absolute observation. Annals of Probability 24 (3) : 1368-1387. ScholarBank@NUS Repository. https://doi.org/10.1214/aop/1065725185
dc.identifier.issn00911798
dc.identifier.urihttp://scholarbank.nus.edu.sg/handle/10635/103480
dc.description.abstractLet {Xn, 1 ≤ n ≤ ∞} be a sequence of independent identically distributed random variables in the domain of attraction of a stable law with index 0 < α < 2. The limit of x-1 n log P{Sn/ max |Xi|≥ xn} is found when xn → ∞ and xn/n → 0. The large deviation result is used to prove the law of the iterated logarithm for the self-normalized partial sums.
dc.sourceScopus
dc.subjectDomain of attraction
dc.subjectLarge deviation
dc.subjectLargest absolute observation
dc.subjectLaw of the iterated logarithm
dc.subjectSelf-normalized partial sums
dc.subjectStable law
dc.typeArticle
dc.contributor.departmentMATHEMATICS
dc.description.doi10.1214/aop/1065725185
dc.description.sourcetitleAnnals of Probability
dc.description.volume24
dc.description.issue3
dc.description.page1368-1387
dc.identifier.isiutNOT_IN_WOS
Appears in Collections:Staff Publications

Show simple item record
Files in This Item:
There are no files associated with this item.

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.